

California Life-Cycle Benefit/Cost Analysis Model (Version 5.0) TIGER Benefit-Cost Analysis

Office of Transportation Economics
Division of Transportation Planning
2016 TIGER Grant Applications

For questions and comments, please contact:

INTRODUCTION

Workshoots

This spreadsheet model provides a method for preparing a simple economic analysis of both highway and transit projects. Given certain input data for a project, the model calculates its life-cycle costs, life-cycle benefits, net present value, benefit/cost ratio, internal rate of return, and payback period. Annual benefits are also calculated.

The model is arranged by worksheets and contains the following information, data, and results:

MOLVOLICETO	Contents
Instructions	General model description and
	assumptions
1) Project Information	Project input data
2) Model Inputs	Highway speed, volume, accident data,
	and trips estimated by model
3) Results	Summary results of analysis
Travel Time	Calculation of travel time and induced
	demand impacts
Vehicle Operating Costs	Calculation of highway vehicle operating

Contents

cost impacts

Accident Costs

Emissions

Calculation of emission impacts

Calculation of net present value, internal rate of return, and payback period

Parameters

Calculations, lookup tables,

and other model parameters

The model is designed so that the user generally needs to enter data only in the green boxes on the Project Information worksheet. The model estimates detailed highway speed, volume, and accident data for the user to review on the Model Inputs worksheet. Highway speeds are estimated from volumes using relationships found in the Highway Capacity Manual. Other adjustments are made for weaving and pavement conditions. An option is also available to conduct a simple queuing analysis. Accidents are estimated from statewide averages and recent data for the facility. If available, inputs from regional planning or traffic simulation models can be entered to override model calculations. Summary results are shown in Results worksheet.

The remaining worksheets are provided for the user to see, but model performs calculations automatically. Some projects (i.e., bypasses, interchanges, and connectors) require the user to enter two sets of highway data, since two roads are involved. The model calculates benefits for the first road before the user enters information about the second road. The user clicks a button and the model clears the Project Information worksheet to receive information on the other road.

In the process of economic analysis, some generally accepted economic assumptions are necessary. These assumptions include: the real and nominal discount rates, unit user costs (e.g., value of time), consumption rates (e.g., fuel consumption and vehicle emissions), and accident rates. These assumptions are given in the Parameters worksheet and should not be changed by the user.

After reading the instructions in this worksheet, the user should proceed to the Project Information worksheet and input data for the specific project in the green boxes (light gray when printed). The model provides default values in the red boxes (medium gray when printed). These values can be changed by the user, if information specific to the project is available. The model calculates some values based on relationships or assumptions, with results shown in the blue boxes (dark gray when printed). These values can be changed by the user.

INSTRUCTIONS

The user can analyze most projects simply by entering limited data on the Project Information Sheet and getting results on the Results page. The Model Inputs page allows the user to enter more detailed data adjust estimated speeds, volumes, and accidents rates, and check the number of trips estimated for projects that affect vehicle occupancy.

PROJECT DATA (Box 1A)

This section provides general information about the project and is used for highway, rail, and transit projects. At the top of the sheet, the user can enter information about the project, such as the project name, Caltrans district, and funding information.

Type of Project

1 Please select the appropriate type of highway, rail, or transit project from the pull-down menu. The menu appears if user clicks on the green box next to the project type.

For a bypass or intersection project, model reminds user that information must be entered for both roads impacted by project. After entering information for the first road, the user clicks a button at bottom of the worksheet to prepare model for data on the bypass or intersecting road. The user may also enter information for connector projects involving two roads.

Project Location

Insert a 1, 2, or 3 for the appropriate region of California. This information is used to estimate peak traffic and emissions benefits.

Length of Construction Period

3 Insert the number of construction years before benefits begin. This must be a whole number (round to next higher integer).

One- or Two-Way Data

4 Indicate whether Highway Design and Traffic Data to be entered in Box 1B is for a single direction or both directions of highway.

Length of Peak Period(s)

5 Insert the number of peak period hours per typical day. The model provides a default of 5 hours (statewide average). Model estimates total % daily traffic occurring during peak period using a lookup table developed from Traffic Census data. Model does not distinguish between weekdays and weekends.

To model a 24-hour HOV or HOT lane, enter 24 hours so peak is 100% of ADT. To model a ramp metering project, user should enter the number of hours per day that metering is operational.

HIGHWAY DESIGN AND TRAFFIC DATA (Box 1B)

Highway design and traffic data must be entered for highway projects. Enter data consistent with one- or two-way answer in Box 1A. Statewide default values are provided for some inputs.

Highway Design

- 6 Roadway Type: Indicate if the road is a freeway, expressway, or conventional highway in build and no build cases.
- 7 Number of General Traffic Lanes: Insert number of general purpose (not HOV or bus) lanes in both directions for build and no build cases. Enter data consistent with Box 1A.
- 8 Number of HOV Lanes: Insert number of HOV lanes in both directions for the build and no build cases. A value must be provided if an HOV restriction is entered on the next row.
- 9 HOV Restriction: If highway facility has/will have HOV lanes, enter the HOV restriction (e.g., 2 means 2 people per vehicle). Must be entered for an HOV project. Enter for a non-HOV project, if facility has HOV lanes. Changes in HOV restrictions are special project types and handled automatically by model.
- 10 Exclusive ROW for Buses: If bus project, indicate (with "Y" or "N") whether buses have exclusive right-of-way. This information is used to estimate emissions.
- 11 Highway Free-Flow Speed: Insert free-flow speed for build and no build cases. Model assumes build is same as no build, if not entered.
- 12 **Ramp Design Speed:** If auxiliary lane or off-ramp project, enter the design speed of the appropriate on- or off-ramp. This is used to estimate the speed of traffic affected by weaving.
- 13 Highway Segment: Insert segment length for build and no build cases. Model assumes build is same as no build, if not entered.
- 14 Impacted Length: The model estimates an area affected by the project. In most cases, this equals the segment length. For passing lane projects, the default affected area is 3 miles longer than the project area. For auxiliary lane and off-ramp projects, the default affected area is 1500 feet. For connectors and HOV drop ramps, default affected area is 3250 feet. User can change these lengths.

Average Daily Traffic (ADT)

- 15 Current: For most projects, insert current two-way ADT on facility. For operational improvements, enter only the one-way ADT applicable to the project. Enter data consistent with one-way or two-way answer in Box 1A.
- 16 Forecast (Year 20): Insert projected ADT for 20 years after construction completion for build and no build cases. Model assumes build is same as no build, if not entered.

The model uses the current and forecasted ADT to estimate annual traffic for 20 years after construction, assuming a linear trend. User can change base (Year 1) forecasts.

Average Hourly HOV/HOT Lane Traffic

17 Insert hourly HOV/HOT volumes for build and no build cases in a typical peak hour.

Percent Traffic in Weave

18 For operational improvements, insert % traffic affected by weaving. Model suggests a % based on the type of project (2 right lanes for auxiliary lanes, 3 right lanes for off-ramps, 2.5% of all traffic for freeway connectors, and 4% of HOV traffic for HOV connectors and drop ramps). Users can change values for project conditions.

Percent Trucks

19 Insert estimated % of ADT comprised of trucks in build and no build cases. Model provides a default value (statewide average).

Truck Speed

20 If passing lane project, enter estimated speed (in MPH) for slow vehicles (trucks, recreational vehicles, etc.). Values must be entered for passing lane projects.

On-Ramp Volume

- 21 Hourly Ramp Volume: If auxiliary lane or on-ramp widening project, insert average hourly ramp volume to estimate traffic affected by weaving for auxiliary lanes and metering effectiveness for on-ramp widening. No entry needed for ramp metering projects.
- 22 **Metering Strategy:** If on-ramp widening project, enter 1, 2, or 3 for vehicles allowed per green signal. Enter "D" for dual metering. No entry should be made for ramp metering projects.

Queue Formation

- 23 Arrival Rate: For queuing and rail grade crossing projects, enter vehicles per hour contributing to queue. Arrival rate should be estimated only for time queue grows. Model estimates queue dissipation automatically.
- **24 Departure Rate:** For queuing and rail crossing projects, enter vehicles per hour leaving queue.

Pavement Condition (for Pavement Rehab. Projects)

25 If pavement rehabilitation project, enter base (Year 1) International Roughness Index (IRI) for build and no build. Model will calculate Year 20 values using standard parameters unless entered by user.

Average Vehicle Occupancy (AVO)

26 Model provides default values. The figures change automatically, depending on presence of HOV lanes. Adjust if project-specific data are available.

HIGHWAY ACCIDENT DATA (Box 1C)

Statewide default values are provided for transit projects. The model uses information provided to calculate accident rates for each accident type in the Model Inputs worksheet.

Actual 3-Year Accident Data (from Table B)

27 Insert the total number of fatal, injury, and property damage only accidents on the segment over the 3 most recent years. For rail grade crossing projects, enter 10-year accident data from FRA WBAPS in fatal and injury rows and collision prediction in total accident row.

Statewide Basic Average Accident Rate

- 28 Insert statewide average accident rates per million vehicle-miles (or million vehicles, as appropriate) for build and no build highway rate groups. Include Base Rate and ADT Factor where applicable.
- 29 Insert statewide % of accidents that are fatal and injury accidents for road classifications similar to build and no build facilities.

The model uses adjustment factors (the ratio of actual rates to statewide rates for existing facility) to estimate accident rates by accident type for the new road classification. Additional adjustments (accident savings) are made for highway TMS projects. Results are presented in the Model Inputs worksheet and can be changed by the user.

RAIL AND TRANSIT DATA (Box 1D)

This section is used for rail and transit projects only.

Annual Person-Trips

- 30 Base (Year 1): Insert estimated annual transit person-trips for first year after construction completion in build and no build cases. For a transit TMS project, enter only person-trips on routes affected. If the routes are substantially different, the benefits analysis should be split into pieces.
- 31 Forecast (Year 20): Insert forecasted annual transit persontrips for 20 years after construction completion in build and no build cases.

Percent Trips during Peak Period

32 Insert % annual person-trips that occur during peak period.

Percent New Trips from Parallel Highway

33 Insert % new transit person-trips originating on parallel highway.

Annual Vehicle-Miles

- 34 Base (Year 1): Insert estimated annual vehicle-miles for first year after construction completion in build and no build cases. For passenger rail projects, multiply the number of train-miles by the average number of rail cars per train consist.
- **35 Forecast (Year 20):** Insert forecasted annual vehicle-miles for 20 years after construction completion in build and no build cases.

Average Vehicles per Train

36 If passenger rail project, insert the average number of rail cars per train consist. This is used to calculate emissions.

Reduction in Transit Accidents

37 If project affects transit/rail safety, insert estimated percent accident reduction due to project. Increases should be entered as negative %.

Average Transit Travel Time

38 In-Vehicle: Insert average in-vehicle transit travel time in minutes during peak and non-peak periods in build and no build cases. For TMS Projects, insert the average for all transit routes impacted. Model assumes build is same as no build for most

- projects. Signal priority and bus rapid transit projects reduce time. User can adjust build travel times.
- 39 **Out-of-Vehicle:** Insert average out-of-vehicle transit travel time in minutes during peak and non-peak periods. Model monetizes out-of-vehicle travel time at a higher value.

Highway Grade Crossing

- **40 Annual Number of Trains:** Insert annual number of passenger and freight trains entering highway-rail crossing.
- **41 Average Gate Down Time:** Insert average time per train that crossing gate is down for passenger and freight trains.

Transit Agency Costs (for Transit TMS Projects)

- 42 Annual Capital Expenditure: If transit TMS project, insert annual agency capital expenditures for routes impacted by project. Model calculates cost reductions for expenditures in build case due to transit TMS. Agency cost savings are entered automatically as a negative cost in Box 1E.
- 43 Annual Ops. and Maintenance Expenditure: If transit TMS project, insert the annual average operating and maintenance costs for routes impacted by project. Model calculates cost reductions for expenditures in build case due to transit TMS. Agency cost savings are entered automatically as a negative cost in Box 1E.

PROJECT COSTS (Box 1E)

Net project costs should be entered in the years they are expected to occur. Costs should be entered for construction period and for twenty years after construction completion. Construction Year 1 is the first year that costs are incurred. All costs should be entered in thousands of dollars.

- 44 Insert project's initial costs in constant (Year 2007) dollars for project development, right-of-way, and construction. The number of construction years with costs should equal the length of the construction period (Box 1A, Input 5).
- 45 Insert estimated future incremental maintenance/operating and rehabilitation costs in constant (Year 2007) dollars. These figures should be entered in the years after the project opens.

- 46 Insert estimated mitigation costs (e.g., wetlands, community, and sound walls) in constant (Year 2007) dollars during construction and for 20 years after construction completion.
- 47 Model adds agency cost savings due to transit TMS automatically.
- 48 Insert any other costs not already included.

HIGHWAY SPEED AND VOLUME INPUTS (Box 2A)

This section allows user to review detailed speed and volume data estimated by the model. These values are estimated from the inputs provided in the Project Information sheet.

- 49 User may enter new speed and volume data for the highway in the green boxes to override model calculations, if detailed data are available from a travel demand or micro-simulation model. The model estimates speeds and volumes on highway for HOVs, non-HOVs, weaving vehicles, and trucks during the peak and non-peak periods in Year 1 and Year 20 in build and no build cases. Speeds are estimated using a BPR curve (or queuing analysis). Adjustments are made to speed and volumes to account for weaving, transit mode shifts, pavement condition, and TMS.
- 50 If TMS project and detailed simulation data are available, the highway results should be inputted in the green cells. Model will use the data in place of figures estimated by the model.

HIGHWAY ACCIDENT RATES (Box 2B)

User may adjust accident rates calculated by the model. User may also enter TASAS highway accident data for rail grade crossing projects in this box.

- 51 **No Build:** Fatality, injury and PDO accident rates for no build facility are estimated using inputs from Box 1C of the Project Information sheet. User may change these rates in green boxes.
- 52 **Highway Safety or Weaving Improvement:** Model assumes an overall safety improvement for off-ramp and ramp metering projects. User may adjust this percentage. For safety projects, user should enter collision reduction factor from HSIP Guidelines.
- 53 Adjustment Factor: User may change the ratios of facility accident rates to statewide averages used in calculating rates

- for the build facility. These factors are also adjusted by the collision reduction factor.
- 54 **Build Facility:** User may modify the fatality, injury, and PDO accident rates for build facility. Model estimates these accident rates using statewide average rates and the adjustment factors.

RAMP AND ARTERIAL INPUTS (Box 2C)

This section allows users to enter detailed arterial information for an arterial signal management project or detailed ramp and arterial data for a highway TMS project.

- 55 **Detailed Information Available:** Input "Y" if detailed arterial and/or ramp data are available. Model automatically selects "Y" if other data are inputted. User should enter detailed ramp and arterial data for TMS highway project if detailed highway data are entered in Box 2A.
- 56 Aggregate Segment Length: Input the total segment lengths for the ramps and arterials. These can be estimated from travel demand or micro-simulation model data as VMT/total trips.
- 57 User may enter speeds and volumes on ramps and arterials during peak and non-peak periods in Year 1 and Year 20 in build and no build cases. If arterial signal management project, user must enter arterial data. Benefits are estimated assuming all vehicles are automobiles.

ANNUAL PERSON-TRIPS (Box 2D)

This section is for information purposes only. It allows user to examine number trips estimated for projects that affect AVO (e.g., HOT lane and HOV conversions).

NEXT STEPS

- 58 For bypass, interchange, and connector projects, click button on Project Information page after data are verified for the first road. Enter data for the second road in Boxes 1B and 1C. As with the first road, detailed data may be verified on Model Inputs page. Model prompts user to save interim version of analysis before proceeding.
- 59 Summary results are available immediately in the Results worksheet.

District:	SC

PROJECT: Decker Blvd

EA:	
PPNO:	

1A PROJEC	T DATA
Type of Project	
Select project type from list	General Highway
Project Location (enter 1 for So. Cal., 2 for No. (Cal., or 3 for rural)
Length of Construction Period	5 years
One- or Two-Way Data	enter 1 or 2
Length of Peak Period(s) (up to 24 hrs)	Current 5 hours

Highway Design	No Build	Build
Roadway Type (Fwy, Exp, Conv Hwy)	C	C
Number of General Traffic Lanes	4	4
Number of HOV/HOT Lanes		
HOV Restriction (2 or 3)		
Exclusive ROW for Buses (y/n)	N	
Highway Free-Flow Speed	35	35
Ramp Design Speed (if aux. lane/off-ramp proj.)	35	35
Length (in miles) Highway Segment	1.9	1.9
Impacted Length	1.9	1.9
Average Daily Traffic		
Current	22,960	
	No Build	Build
Base (Year 1)	24,369	29,120
Forecast (Year 20)	32,337	32,337
Average Hourly HOV/HOT Lane Traffic		0
Percent of Induced Trips in HOV (if HOT or 2-to-3	conv.)	100%
Percent Traffic in Weave		0.0%
Percent Trucks (include RVs, if applicable)	9%	9%
Truck Speed	35	
On-Ramp Volume	Peak	Non-Peak
Hourly Ramp Volume (if aux. lane/on-ramp proj.)	0	0
Metering Strategy (1, 2, 3, or D, if on-ramp proj.)		
Queue Formation (if queuing or grade crossing project)	Year 1	Year 20
Arrival Rate (in vehicles per hour)	0	0
Departure Rate (in vehicles per hour)	0	0
Pavement Condition (if pavement project)	No Build	Build
IRI (inches/mile) Base (Year 1)	121	85
Forecast (Year 20)	241	169
10.0000 (100.20)	2	100
Average Vehicle Occupancy (AVO)	No Build	Build
	1.30	1.30
General Traffic Non-Peak	1.30	
General Traffic Non-Peak Peak High Occupancy Vehicle (if HOV/HOT lanes)	1.15	1.15

1C HIGHWAY ACCIDENT DATA							
Actual 3-Year Accident Data (from Table B)							
	Count (No.)	Rate					
Total Accidents (Tot)	275	5.85					
Fatal Accidents (Fat)	0	0.000					
Injury Accidents (Inj)	67	1.43					
Property Damage Only (PDO) Accidents	208	4.42					
1							
Statewide Basic Average Accident Rate							
	No Build	Build					
Rate Group	1.00	1.00					
Accident Rate (per million vehicle-miles)	2.386	2.219					
Percent Fatal Accidents (Pct Fat)	0.634%	0.634%					
Percent Injury Accidents (Pct Inj)	28.52%	28.52%					

nnual Person-Ti	rips		No Build	Build
	Base (Year 1)			
	Forecast (Year	20)		
ercent Trips dur	ing Peak Period	1	41%	
ercent New Trip				100%
nnual Vehicle-M			No Build	Build
	Base (Year 1)			
	Forecast (Year			
verage Vehicles	/Train (if rail proje	ct)		
Percent Reducti	nsit Accidents on (if safety projec	et)		
Percent Reducti	on (if safety projec	it)	No Build	Build
	on (if safety projec		No Build	Build 0.0
Percent Reducti verage Transit 1	on (if safety projec	inutes)	No Build	
Percent Reducti verage Transit 1	on (if safety project Fravel Time Non-Peak (in m	inutes)	No Build	0.0
Percent Reducti verage Transit 1 In-Vehicle	on (if safety project Fravel Time Non-Peak (in m Peak (in minute	inutes) s) inutes)		0.0
Percent Reducti Verage Transit 1 In-Vehicle Out-of-Vehicle	on (if safety project Fravel Time Non-Peak (in m Peak (in minute Non-Peak (in minute Peak (in minute	inutes) s) inutes) s)	0.0	0.0 0.0 0.0 0.0
Percent Reducti verage Transit 1 In-Vehicle Out-of-Vehicle lighway Grade C	Travel Time Non-Peak (in m Peak (in minute Non-Peak (in minute Non-Peak (in minute	inutes) s) inutes)	0.0 0.0 Year 1	0.0 0.0 0.0 0.0
Percent Reducti verage Transit 1 In-Vehicle Out-of-Vehicle lighway Grade C Annual Number	Travel Time Non-Peak (in m Peak (in minute Non-Peak (in minute Non-Peak (in minute Peak (in minute Trossing of Trains	inutes) s) inutes) s)	0.0 0.0 Year 1	0.0 0.0 0.0 0.0
Percent Reducti verage Transit 1 In-Vehicle Out-of-Vehicle lighway Grade C	Travel Time Non-Peak (in m Peak (in minute Non-Peak (in minute Non-Peak (in minute Peak (in minute Trossing of Trains	inutes) s) inutes) s)	0.0 0.0 Year 1	0.0 0.0 0.0
Percent Reducti Verage Transit 1 In-Vehicle Out-of-Vehicle Dighway Grade C Annual Number Avg. Gate Down	on (if safety project Fravel Time Non-Peak (in m Peak (in minute Non-Peak (in m Peak (in minute Prossing of Trains Time (in min.)	inutes) s) inutes) ss) Current	0.0 0.0 Year 1	0.0 0.0 0.0 0.0
Percent Reducti verage Transit 1 In-Vehicle Out-of-Vehicle lighway Grade C Annual Number	on (if safety project Fravel Time Non-Peak (in m Peak (in minute Non-Peak (in m Peak (in minute Frossing of Trains Time (in min.)	inutes) s) inutes) ss) Current	0.0 0.0 Year 1 0 0.0	0.0 0.0 0.0 0.0 Vear 20

Model should be run for both roads for intersection or bypass highway projects, and may be run twice for connectors. Press button below to prepare model to enter data for second road. After data are entered, results reflect total project benefits.

Prepare Model for Second Road

1E			PROJECT C	OSTS (ente	r costs in	thousands	of dollars)		
Col. no.	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
			T PROJECT COS				Transit		
		INITIAL COSTS		SUBSEQUE	NT COSTS		Agency	TOTAL COSTS	
Year	Project			Maint./			Cost	Constant	Present
	Support	R/W	Construction	Op.	Rehab.	Mitigation	Savings	Dollars	Value
Construction									
1	\$2,126							\$2,126,000	\$2,126,000
2	\$2,126							\$2,126,000	\$1,986,916
3			\$8,032					\$8,000,000	\$6,987,510
4			\$8,032					\$8,000,000	\$6,530,383
5			\$8,032					\$8,000,000	\$6,103,162
6								\$0	\$(
7								\$0	\$(
8								\$0	\$0
Project Op	en								
1				\$50				\$50,000	\$35,64
2				\$50				\$50,000	\$33,31
3				\$50				\$50,000	\$31,137
4				\$50				\$50,000	\$29,10
5				\$50				\$50,000	\$27,19
6				\$50				\$50,000	\$25,41
7				\$50				\$50,000	\$23,75
8				\$50				\$50,000	\$22,20
9				\$50				\$50,000	\$20,74
10				\$50				\$50,000	\$19,39
11				\$50				\$50,000	\$18,12
12				\$50				\$50,000	\$16,93
13				\$50				\$50,000	\$15,82
14				\$50				\$50,000	\$14,79
15				\$50				\$50,000	\$13,82
16				\$50				\$50,000	\$12,92°
17				\$50				\$50,000	\$12,070
18				\$50				\$50,000	\$11,286
19				\$50				\$50,000	\$10,54
20				\$50				\$50,000	\$9,857
Total	\$4,252	\$0	\$24,096	\$1,000	\$0	\$0	\$0	\$29,252,000	\$24,138,077

Present Value = Future Value (in Constant Dollars)
(1 + Real Discount Rate) ^ Year

	Calculated by Model	Changed by User	Used for Proj. Eval. Rea	ason for Change
	Model	by osei	Eval. Nec	ison for onlinge
l ak Period				
HOV Volume	0		0	
Non-HOV Volume	9,092	7,420	7,420	
Weaving Volume Truck Volume	0 899	734	734	
HOV Speed	55.0	754	55.0	
Non-HOV Speed	35.0	15.0	15.0	
Weaving Speed Truck Speed	55.0 15.0	15.0	55.0 15.0	
Truck Speed	15.0	15.0	15.0	
n-Peak Period				
Non-HOV Volume Weaving Volume	13,084	17,058	17,058	
Truck Volume	1,294	1,687	1,687	
Non-HOV Speed	35.0	35.0	35.0	
Weaving Speed	55.0	25.2	55.0	
Truck Speed	35.0	35.0	35.0	
20				
ak Period				
HOV Volume Non-HOV Volume	12,065	9,701	9,701	
Weaving Volume	0	9,701	9,701	
Truck Volume	1,193	959	959	
HOV Speed	55.0		55.0	
Non-HOV Speed	35.0	10.0	10.0	
Weaving Speed Truck Speed	55.0 10.0	10.0	55.0 10.0	
тиск ореец	10.0	10.0	10.0	
n-Peak Period				
Non-HOV Volume	17,362	22,636	22,636	
Weaving Volume	0		0	
Truck Volume	1,717	2,239	2,239	
Non-HOV Speed Weaving Speed	35.0 55.0	35.0	35.0 55.0	
Truck Speed	35.0	35.0	35.0	
!				
ak Period HOV Volume			0	
Non-HOV Volume	10,865	7,420	7,420	
Weaving Volume	0	7,420	0	
Truck Volume	1,075	734	734	
HOV Speed	55.0	25.0	55.0	
Non-HOV Speed Weaving Speed	35.0 55.0	25.0	25.0 55.0	
Truck Speed	25.0	25.0	25.0	
-Peak Period	45.005	47.050	47.050	
Non-HOV Volume Weaving Volume	15,635	17,058	1 / 058	
			17,058	
	1,546	1,687	0 1,687	
Truck Volume Non-HOV Speed	35.0	1,687 35.0	0 1,687 35.0	
Truck Volume Non-HOV Speed Weaving Speed	35.0 55.0	35.0	0 1,687 35.0 55.0	
ruck Volume Ion-HOV Speed Veaving Speed	35.0		0 1,687 35.0	
Truck Volume Non-HOV Speed Weaving Speed Truck Speed	35.0 55.0	35.0	0 1,687 35.0 55.0	
Truck Volume Non-HOV Speed Weaving Speed Truck Speed	35.0 55.0 35.0	35.0	0 1,687 35.0 55.0 35.0	
Truck Volume Non-HOV Speed Weaving Speed Truck Speed 20 ak Period HOV Volume	35.0 55.0 35.0	35.0 35.0	0 1,687 35.0 55.0 35.0	
Truck Volume Non-HOV Speed Weaving Speed Truck Speed 20 ak Period HOV Volume Non-HOV Volume	35.0 55.0 35.0 0 12,065	35.0	0 1,687 35.0 55.0 35.0 0 9,701	
Truck Volume Non-HOV Speed Weaving Speed Truck Speed 20 ak Period HOV Volume Non-HOV Volume Weaving Volume	35.0 55.0 35.0 35.0 0 12,065	35.0 35.0 9,701	0 1,687 35.0 55.0 35.0 0 9,701 0	
Truck Volume Non-HOV Speed Weaving Speed Truck Speed O als Period HOV Volume Non-HOV Volume Weaving Volume Truck Volume HOV Speed	35.0 55.0 35.0 0 12,065 0 1,193 55.0	35.0 35.0 9,701	0 1,687 35.0 55.0 35.0 0 9,701 0 959 55.0	
Truck Volume Non-HOV Speed Weaving Speed Truck Speed 20 aak Period HOV Volume Non-HOV Volume Weaving Volume Truck Volume HOV Speed Non-HOV Speed	35.0 55.0 35.0 0 12,065 0 1,193 55.0 35.0	35.0 35.0 9,701	0 1,687 35.0 55.0 35.0 0 9,701 0 959 55.0 21.0	
Truck Volume Non-HOV Speed Weaving Speed Truck Speed 20 ak Period HOV Volume Non-HOV Volume Weaving Volume Truck Volume HOV Speed Non-HOV Speed Weaving Speed	35.0 55.0 35.0 0 12,065 0 1,193 55.0 35.0 55.0	9,701 959 21.0	0 1,687 35.0 55.0 35.0 0 9,701 0 959 55.0 21.0 55.0	
Truck Volume Non-HOV Speed Weaving Speed Truck Speed 20 ak Period HOV Volume Non-HOV Volume Weaving Volume Truck Volume HOV Speed Non-HOV Speed Weaving Speed	35.0 55.0 35.0 0 12,065 0 1,193 55.0 35.0	35.0 35.0 9,701	0 1,687 35.0 55.0 35.0 0 9,701 0 959 55.0 21.0	
Truck Volume Non-HOV Speed Weaving Speed Truck Speed	35.0 55.0 35.0 0 12,065 0 1,193 55.0 35.0 55.0	9,701 959 21.0	0 1,687 35.0 55.0 35.0 0 9,701 0 959 55.0 21.0 55.0	
Truck Volume Non-HOV Speed Weaving Speed Truck Speed 20 ak Period HOV Volume Non-HOV Volume Weaving Volume Truck Volume HOV Speed Non-HOV Speed Weaving Speed Truck Speed Non-HOV Speed Non-HOV Volume Non-HOV Volume	35.0 55.0 35.0 0 12,065 0 1,193 55.0 35.0 55.0 21.0	9,701 959 21.0	0 1,687 35.0 55.0 35.0 0 9,701 0 959 55.0 21.0 55.0 21.0	
Truck Volume Non-HOV Speed Weaving Speed Truck Speed 20 ak Period HOV Volume Non-HOV Volume Truck Volume Truck Volume HOV Speed Non-HOV Speed Weaving Speed Truck Speed Truck Speed Non-HOV Volume Weaving Volume Weaving Volume	35.0 55.0 35.0 0 12,065 0 1,193 55.0 35.0 55.0 21.0	9,701 959 21.0 22,636	0 1,687 35.0 55.0 35.0 0 9,701 0 959 55.0 21.0 55.0 21.0	
Truck Volume Non-HOV Speed Weaving Speed Truck Speed 20 ak Period HOV Volume Non-HOV Volume Weaving Volume Truck Volume HOV Speed Non-HOV Speed Weaving Speed Truck Speed Non-HOV Volume Weaving Volume Truck Volume Volume Truck Volume	35.0 55.0 35.0 0 12,065 0 1,193 55.0 35.0 55.0 21.0 17,362 0 1,717	9,701 959 21.0 22,636 2,239	0 1,687 35.0 55.0 35.0 0 9,701 0 959 55.0 21.0 55.0 21.0	
Truck Volume Non-HOV Speed Weaving Speed Truck Speed 20 ak Period HOV Volume Non-HOV Volume Truck Volume Truck Volume HOV Speed Non-HOV Speed Weaving Speed Truck Speed Truck Speed Non-HOV Volume Weaving Volume Weaving Volume	35.0 55.0 35.0 0 12,065 0 1,193 55.0 35.0 55.0 21.0	9,701 959 21.0 22,636	0 1,687 35.0 55.0 35.0 0 9,701 0 959 55.0 21.0 55.0 21.0	

Model speed estimates based on Highway Capacity Manual, pavement research, and research on weaving impacts

HIGHWAY ACCIDENT RATES								
	Calculated by Model	Changed by User	Used for Proj. Eval.	Reason for Change				
No Build				· ·				
Fatal Accidents	0.000	0.000	0.000					
Injury Accidents	1.43	7.01	7.01	Used local data rates				
PDO Accidents	4.42	21.77	21.77	Used local data rates				
Total Accidents	5.850							
Hwy Safety or Weaving Impro	vement	0%	collision reduction	factor (per HSIP Guidelines)				
Adjustment Factor (Actual/Stat	tewide Avg. Existing)	0%		factor (per HSIP Guidelines)				
Adjustment Factor (Actual/Stat	tewide Avg. Existing) 0.0000	0%	0.0000	factor (per HSIP Guidelines)				
Adjustment Factor (Actual/Stat Fatal Accidents Injury Accidents	tewide Avg. Existing) 0.0000 10.3021	0%	0.0000 10.3021	factor (per HSIP Guidelines)				
Adjustment Factor (Actual/Stat	tewide Avg. Existing) 0.0000	0%	0.0000	factor (per HSIP Guidelines)				
Adjustment Factor (Actual/Stat Fatal Accidents Injury Accidents	tewide Avg. Existing) 0.0000 10.3021	0%]	0.0000 10.3021	factor (per HSIP Guidelines)				
Adjustment Factor (Actual/Stat Fatal Accidents Injury Accidents PDO Accidents	tewide Avg. Existing) 0.0000 10.3021	0%	0.0000 10.3021	factor (per HSIP Guidelines)				
Adjustment Factor (Actual/Stat Fatal Accidents Injury Accidents PDO Accidents Build	0.0000 10.3021 12.8796	5.96	0.0000 10.3021 12.8796	factor (per HSIP Guidelines) Introduction of medians and reduction of intersection accide				
Adjustment Factor (Actual/Stat Fatal Accidents Injury Accidents PDO Accidents Build Fatal Accidents	tewide Avg. Existing) 0.0000 10.3021 12.8796		0.0000 10.3021 12.8796 0.000 5.96					

tailed Information Available? (y/n)	N		
gregate Segment Length (estimate as VMT	/total volume)		
All Ramps		miles	
Arterials		miles	
	Entered	Used for	•
	by User	Proj. Eval.	Source/Notes
Build (Peak Period Only)			
Year 1			
Aggregate Ramp Volume Aggregate Arterial Volume		0	
Average Ramp Speed		5.0	
Average Arterial Speed		5.0	
Average Attends opeca		0.0	
Year 20			
Aggregate Ramp Volume		0	
Aggregate Arterial Volume		0	
Average Ramp Speed		5.0	
Average Arterial Speed		5.0	
ild (Peak Period Only) Year 1			
Aggregate Ramp Volume		0	
Aggregate Arterial Volume		0	
Average Ramp Speed		5.0	
Average Arterial Speed		5.0	
Year 20			
Aggregate Ramp Volume		0	
Aggregate Arterial Volume		0	
Average Ramp Speed		5.0	
Average Arterial Speed		5.0	

District: SC

PROJECT: Decker Blvd

EA:	
PPNO:	

INVESTMENT ANALYSIS SUMMARY RESULTS Life-Cycle Costs (mil. \$) \$24.1 Life-Cycle Benefits (mil. \$) \$95.8 Net Present Value (mil. \$) \$71.7 Benefit / Cost Ratio: 4.0 Rate of Return on Investment: 25.6% Payback Period: 3 years ITEMIZED BENEFIT Travel Time Sav Veh. Op. Cost S Accident Cost S Emission Cost S TOTAL BENEFITS Person-Hours of T CO₂ Emissions Sav CO₂ Emissions Sav

	Average	Total Over
ITEMIZED BENEFITS (mil. \$)	Annual	20 Years
Travel Time Savings	\$1.7	\$33.1
Veh. Op. Cost Savings	\$0.2	\$4.7
Accident Cost Savings	\$2.8	\$57.0
Emission Cost Savings	\$0.1	\$1.1
TOTAL BENEFITS	\$4.8	\$95.8
	·	
Person-Hours of Time Saved	278,985	5,579,710
CO ₂ Emissions Saved (tons)	2,328	46,551
CO ₂ Emissions Saved (mil. \$)	\$0.0	\$0.9

Should benefit-cost results include: 1) Induced Travel? (y/n) 2) Vehicle Operating Costs? (y/n) 3) Accident Costs? (y/n) 4) Vehicle Emissions? (y/n) includes value for CO₂e Pefault = Y Default = Y Default = Y Default = Y

\bigcirc C

SUMMARY OF TRAVEL TIME BENEFITS

					HIGHWAY					
Year	Peak HOV	Peak Non-HOV	Peak Weaving	Peak Truck	Peak Ramp	Peak Arterial	Non-Peak Non-HOV	Non-Peak Weaving	Non-Peak Truck	
1	\$0	\$1,518,076	\$0	\$252,001	\$0	\$0	\$0	\$0	\$0	
20	\$0	\$1,352,224	\$0	\$224,469	\$0	\$0	\$0	\$0	\$0	
2	\$0	\$1,505,567	\$0	\$249,924	\$0	\$0	\$0	\$0	\$0	
3	\$0	\$1,493,325	\$0	\$247,892	\$0	\$0	\$0	\$0	\$0	
4	\$0	\$1,481,377	\$0	\$245,909	\$0	\$0	\$0	\$0	\$0	
5	\$0	\$1,469,749	\$0	\$243,978	\$0	\$0	\$0	\$0	\$0	
6	\$0	\$1,458,467	\$0	\$242,106	\$0	\$0	\$0	\$0	\$0	
7	\$0	\$1,447,556	\$0	\$240,294	\$0	\$0	\$0	\$0	\$0	
8	\$0	\$1,437,043	\$0	\$238,549	\$0	\$0	\$0	\$0	\$0	
9	\$0	\$1,426,953	\$0	\$236,874	\$0	\$0	\$0	\$0	\$0	
10	\$0	\$1,417,312	\$0	\$235,274	\$0	\$0	\$0	\$0	\$0	
11	\$0	\$1,408,149	\$0	\$233,753	\$0	\$0	\$0	\$0	\$0	
12	\$0	\$1,399,490	\$0	\$232,315	\$0	\$0	\$0	\$0	\$0	
13	\$0	\$1,391,365	\$0	\$230,967	\$0	\$0	\$0	\$0	\$0	
14	\$0	\$1,383,804	\$0	\$229,711	\$0	\$0	\$0	\$0	\$0	
15	\$0	\$1,376,839	\$0	\$228,555	\$0	\$0	\$0	\$0	\$0	
16	\$0	\$1,370,503	\$0	\$227,504	\$0	\$0	\$0	\$0	\$0	
17	\$0	\$1,364,834	\$0	\$226,562	\$0	\$0	\$0	\$0	\$0	
18	\$0	\$1,359,869	\$0	\$225,738	\$0	\$0	\$0	\$0	\$0	
19	\$0	\$1,355,651	\$0	\$225,038	\$0	\$0	\$0	\$0	\$0	
Total	\$0	\$28,418,153	\$0	\$4,717,413	\$0	\$0	\$0	\$0	\$0	

Transportation Economics

Caltrans DOTP

Cal-B/C Travel Time

Page 13
4/27/2016

SUMMARY OF TRAVEL TIME BENEFITS (continued)

		TRAI	NSIT		Present		Total
					Value of		Per-Hrs
Year	Peak	Peak	Non-Peak	Non-Peak	Travel Time	Constant	of Time
	In-Vehicle	Out-of-Veh	In-Vehicle	Out-of-Veh	Benefits	Dollars	Saved
1	\$0	\$0	\$0	\$0	\$1,770,077	\$2,482,624	168,669
20	\$0	\$0	\$0	\$0	\$1,576,694	\$7,997,568	433,164
2	\$0	\$0	\$0	\$0	\$1,755,491	\$2,634,518	176,866
3	\$0	\$0	\$0	\$0	\$1,741,217	\$2,796,014	185,482
4	\$0	\$0	\$0	\$0	\$1,727,286	\$2,967,799	194,543
5	\$0	\$0	\$0	\$0	\$1,713,728	\$3,150,618	204,079
6	\$0	\$0	\$0	\$0	\$1,700,573	\$3,345,284	214,119
7	\$0	\$0	\$0	\$0	\$1,687,851	\$3,552,676	224,697
8	\$0	\$0	\$0	\$0	\$1,675,592	\$3,773,754	235,849
9	\$0	\$0	\$0	\$0	\$1,663,827	\$4,009,565	247,615
10	\$0	\$0	\$0	\$0	\$1,652,586	\$4,261,250	260,038
11	\$0	\$0	\$0	\$0	\$1,641,901	\$4,530,057	273,163
12	\$0	\$0	\$0	\$0	\$1,631,805	\$4,817,356	287,043
13	\$0	\$0	\$0	\$0	\$1,622,331	\$5,124,644	301,732
14	\$0	\$0	\$0	\$0	\$1,613,515	\$5,453,571	317,291
15	\$0	\$0	\$0	\$0	\$1,605,394	\$5,805,951	333,787
16	\$0	\$0	\$0	\$0	\$1,598,007	\$6,183,782	351,294
17	\$0	\$0	\$0	\$0	\$1,591,396	\$6,589,276	369,891
18	\$0	\$0	\$0	\$0	\$1,585,607	\$7,024,878	389,667
19	\$0	\$0	\$0	\$0	\$1,580,689	\$7,493,303	410,722
Total	\$0	\$0	\$0	\$0	\$33,135,566	\$93,994,490	5,579,710

\bigcirc C

SUMMARY OF VEHICLE OPERATING COST BENEFITS

				HIGH	MANA				TD.	NOT	Duccout	
				HIGH	WAY				IRA	NSIT	Present	
		1			i					1	Value of	
Year	Peak	Peak	Peak	Peak	Peak	Non-Peak	Non-Peak	Non-Peak	Peak	Non-Peak	Veh Op Cost	Constant
	HOV	Non-HOV	Weaving	Truck	Arterial	Non-HOV	Weaving	Truck	Period	Period	Benefits	Dollars
1	\$0	\$246,446	\$0	\$41,226	\$0	\$0	\$0	\$0	-	-	\$287,672	\$403,475
20	\$0	\$139,024	\$0	\$24,067	\$0	\$0	\$0	\$0	-	-	\$163,091	\$827,260
	·	•		•								
2	\$0	\$256,341	\$0	\$43,385	\$0	\$0	\$0	\$0	-	-	\$299,726	\$449,807
3	\$0	\$243,385	\$0	\$41,192	\$0	\$0	\$0	\$0	-	-	\$284,578	\$456,969
4	\$0	\$231,028	\$0	\$39,101	\$0	\$0	\$0	\$0	-	-	\$270,129	\$464,131
5	\$0	\$255,175	\$0	\$43,367	\$0	\$0	\$0	\$0	-	-	\$298,542	\$548,857
6	\$0	\$226,800	\$0	\$38,641	\$0	\$0	\$0	\$0	-	-	\$265,441	\$522,163
7	\$0	\$215,135	\$0	\$36,654	\$0	\$0	\$0	\$0	-	-	\$251,789	\$529,979
8	\$0	\$204,026	\$0	\$34,761	\$0	\$0	\$0	\$0	-	-	\$238,787	\$537,795
9	\$0	\$221,933	\$0	\$37,964	\$0	\$0	\$0	\$0	-	-	\$259,897	\$626,312
10	\$0	\$210,386	\$0	\$35,989	\$0	\$0	\$0	\$0	-	-	\$246,374	\$635,285
11	\$0	\$187,137	\$0	\$32,135	\$0	\$0	\$0	\$0	-	-	\$219,272	\$604,977
12	\$0	\$177,330	\$0	\$30,451	\$0	\$0	\$0	\$0	-	-	\$207,781	\$613,402
13	\$0	\$190,980	\$0	\$32,936	\$0	\$0	\$0	\$0	-	-	\$223,916	\$707,309
14	\$0	\$180,904	\$0	\$31,198	\$0	\$0	\$0	\$0	-	-	\$212,103	\$716,892
15	\$0	\$171,330	\$0	\$29,547	\$0	\$0	\$0	\$0	-	-	\$200,877	\$726,476
16	\$0	\$153,288	\$0	\$26,515	\$0	\$0	\$0	\$0	-	-	\$179,803	\$695,780
17	\$0	\$163,988	\$0	\$28,389	\$0	\$0	\$0	\$0	-	-	\$192,377	\$796,547
18	\$0	\$155,229	\$0	\$26,873	\$0	\$0	\$0	\$0	-	-	\$182,102	\$806,784
19	\$0	\$146,915	\$0	\$25,433	\$0	\$0	\$0	\$0	-	-	\$172,348	\$817,022
Total	\$0	\$3,976,779	\$0	\$679,824	\$0	\$0	\$0	\$0	_	_	\$4,656,603	\$12,487,223

Transportation Economics Caltrans DOTP

C

SUMMARY OF ACCIDENT REDUCTION BENEFITS

				HIGHW	/AY				TRANSIT	Present
		,	,	1		,	,			Value of
Year	Peak	Peak	Peak	Peak	Peak	Non-Peak	Non-Peak	Non-Peak	All	Accident
	HOV	Non-HOV	Weaving	Truck	Arterial	Non-HOV	Weaving	Truck	Periods	Benefits
1	\$0	\$1,234,289	\$0	\$122,071	\$0	\$2,837,535	\$0	\$280,632	\$0	\$4,474,527
20	\$0	\$446,208	\$0	\$44,130	\$0	\$1,041,168	\$0	\$102,972	\$0	\$1,634,478
2	\$0	\$1,172,205	\$0	\$115,931	\$0	\$2,697,542	\$0	\$266,787	\$0	\$4,252,466
3	\$0	\$1,112,962	\$0	\$110,072	\$0	\$2,563,723	\$0	\$253,552	\$0	\$4,040,309
4	\$0	\$1,056,453	\$0	\$104,483	\$0	\$2,435,867	\$0	\$240,907	\$0	\$3,837,710
5	\$0	\$1,002,574	\$0	\$99,155	\$0	\$2,313,768	\$0	\$228,832	\$0	\$3,644,328
6	\$0	\$951,224	\$0	\$94,076	\$0	\$2,197,219	\$0	\$217,305	\$0	\$3,459,824
7	\$0	\$902,301	\$0	\$89,238	\$0	\$2,086,017	\$0	\$206,307	\$0	\$3,283,863
8	\$0	\$855,709	\$0	\$84,630	\$0	\$1,979,961	\$0	\$195,818	\$0	\$3,116,118
9	\$0	\$811,351	\$0	\$80,243	\$0	\$1,878,854	\$0	\$185,819	\$0	\$2,956,266
10	\$0	\$769,134	\$0	\$76,067	\$0	\$1,782,502	\$0	\$176,289	\$0	\$2,803,993
11	\$0	\$728,969	\$0	\$72,095	\$0	\$1,690,715	\$0	\$167,212	\$0	\$2,658,991
12	\$0	\$690,767	\$0	\$68,317	\$0	\$1,603,309	\$0	\$158,567	\$0	\$2,520,960
13	\$0	\$654,444	\$0	\$64,724	\$0	\$1,520,103	\$0	\$150,338	\$0	\$2,389,610
14	\$0	\$619,917	\$0	\$61,310	\$0	\$1,440,922	\$0	\$142,507	\$0	\$2,264,656
15	\$0	\$587,106	\$0	\$58,065	\$0	\$1,365,596	\$0	\$135,057	\$0	\$2,145,824
16	\$0	\$555,936	\$0	\$54,982	\$0	\$1,293,958	\$0	\$127,972	\$0	\$2,032,848
17	\$0	\$526,331	\$0	\$52,054	\$0	\$1,225,849	\$0	\$121,236	\$0	\$1,925,470
18	\$0	\$498,220	\$0	\$49,274	\$0	\$1,161,113	\$0	\$114,834	\$0	\$1,823,441
19	\$0	\$471,535	\$0	\$46,635	\$0	\$1,099,601	\$0	\$108,751	\$0	\$1,726,521
								<u>.</u>		
Total	\$0	\$15,647,635	\$0	\$1,547,551	\$0	\$36,215,322	\$0	\$3,581,695	\$0	\$56,992,204

Transportation Economics
Caltrans DOTP
Callrans DOTP
Call-B/C Accident Costs
Page 16
4/27/2016

Constant Dollars \$6,275,756 \$8,290,674

\$6,381,804
\$6,487,853
\$6,593,901
\$6,699,949
\$6,805,998
\$6,912,046
\$7,018,094
\$7,124,143
\$7,230,191
\$7,336,239
\$7,442,287
\$7,548,336
\$7,654,384
\$7,760,432
\$7,866,481
\$7,972,529
\$8,078,577
\$8,184,626

\$145,664,300

C

SUMMARY OF EMISSION REDUCTION BENEFITS

					HIGHWAY				
Year	Peak HOV	Peak Non-HOV	Peak Weaving	Peak Truck	Peak Ramp	Peak Arterial	Non-Peak Non-HOV	Non-Peak Weaving	Non-Peak Truck
1	\$0	\$50,150	\$0	\$8,337	\$0	\$0	\$0	\$0	\$0
20	\$0	\$37,612	\$0 \$0	\$6,171	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0
20	φυ	φ37,012	φυ	φ0,171	φυ	φυ	ΦΟ	φυ	φυ
2	\$0	\$53,249	\$0	\$8,904	\$0	\$0	\$0	\$0	\$0
3	\$0	\$51,396	\$0	\$8,589	\$0	\$0	\$0	\$0	\$0
4	\$0	\$49,598	\$0	\$8,285	\$0	\$0	\$0	\$0	\$0
5	\$0	\$55,705	\$0	\$9,326	\$0	\$0	\$0	\$0	\$0
6	\$0	\$50,358	\$0	\$8,435	\$0	\$0	\$0	\$0	\$0
7	\$0	\$48,569	\$0	\$8,132	\$0	\$0	\$0	\$0	\$0
8	\$0	\$44,249	\$0	\$7,153	\$0	\$0	\$0	\$0	\$0
9	\$0	\$49,123	\$0	\$7,961	\$0	\$0	\$0	\$0	\$0
10	\$0	\$47,405	\$0	\$7,685	\$0	\$0	\$0	\$0	\$0
11	\$0	\$43,071	\$0	\$6,992	\$0	\$0	\$0	\$0	\$0
12	\$0	\$41,550	\$0	\$6,748	\$0	\$0	\$0	\$0	\$0
13	\$0	\$45,555	\$0	\$7,426	\$0	\$0	\$0	\$0	\$0
14	\$0	\$43,933	\$0	\$7,164	\$0	\$0	\$0	\$0	\$0
15	\$0	\$42,363	\$0	\$6,910	\$0	\$0	\$0	\$0	\$0
16	\$0	\$38,616	\$0	\$6,316	\$0	\$0	\$0	\$0	\$0
17	\$0	\$42,023	\$0	\$6,889	\$0	\$0	\$0	\$0	\$0
18	\$0	\$40,503	\$0	\$6,642	\$0	\$0	\$0	\$0	\$0
19	\$0	\$39,033	\$0	\$6,403	\$0	\$0	\$0	\$0	\$0
						-	-		
Total	\$0	\$914,057	\$0	\$150,468	\$0	\$0	\$0	\$0	\$0

Transportation Economics

Caltrans DOTP

Page 18

Cal-B/C Emissions

4/27/2016

SUMMARY OF EMISSION REDUCTION BENEFITS (continued)

		TRA	NSIT		Present Value of	
Year	Peak	Non-Peak	Passenger	Light	Emission	Constant
	Bus	Bus	Rail	Rail	Benefits	Dollars
1	\$0	\$0	\$0	\$0	\$58,487	\$82,031
20	\$0	\$0	\$0	\$0	\$43,783	\$222,084
2	\$0	\$0	\$0	\$0	\$62,152	\$93,274
3	\$0	\$0	\$0	\$0	\$59,985	\$96,323
4	\$0	\$0	\$0	\$0	\$57,883	\$99,453
5	\$0	\$0	\$0	\$0	\$65,031	\$119,557
6	\$0	\$0	\$0	\$0	\$58,794	\$115,656
7	\$0	\$0	\$0	\$0	\$56,701	\$119,347
8	\$0	\$0	\$0	\$0	\$51,402	\$115,766
9	\$0	\$0	\$0	\$0	\$57,084	\$137,564
10	\$0	\$0	\$0	\$0	\$55,089	\$142,050
11	\$0	\$0	\$0	\$0	\$50,063	\$138,126
12	\$0	\$0	\$0	\$0	\$48,298	\$142,582
13	\$0	\$0	\$0	\$0	\$52,980	\$167,355
14	\$0	\$0	\$0	\$0	\$51,097	\$172,703
15	\$0	\$0	\$0	\$0	\$49,273	\$178,196
16	\$0	\$0	\$0	\$0	\$44,932	\$173,872
17	\$0	\$0	\$0	\$0	\$48,911	\$202,520
18	\$0	\$0	\$0	\$0	\$47,145	\$208,869
19	\$0	\$0	\$0	\$0	\$45,436	\$215,389
Total	\$0	\$0	\$0	\$0	\$1,064,525	\$2,942,719

CO ₂ EMIS	
tons/yr	PV \$/yr
1,495	\$48,236
3,090	\$40,180
0,000	ψ10,100
1,667	\$51,291
1,694	\$49,672
1,720	\$48,093
2,031	\$54,118
1,931	\$49,062
1,960	\$47,470
2,005	\$46,280
2,337	\$51,438
2,371	\$49,737
2,263	\$45,260
2,295	\$43,746
2,647	\$48,107
2,683	\$46,480
2,719	\$44,900
2,604	\$40,990
2,976	\$44,661
3,014	\$43,121
3,052	\$41,628

46,551

\$934,470

\bigcirc A

NET PRESENT VALUE CALCULATION

	PR	RESENT VALUE C	F USER BENEFI	TS	PI	RESENT VALUE (OF USER BENEF	TS
Year	Travel Time Savings	Vehicle Op. Cost Savings	Accident Reductions	Vehicle Emission Reductions	Travel Time Savings	Vehicle Op. Cost Savings	Accident Reductions	Vehicle Emission Reductions
Constru	ction Period							
1								
2								
3								
4								
5								
6								
7								
8								
Project (Open							
1	\$1,770,077	\$287,672	\$4,474,527	\$58,487				
2	\$1,755,491	\$299,726	\$4,252,466	\$62,152				
3	\$1,741,217	\$284,578	\$4,040,309	\$59,985				
4	\$1,727,286	\$270,129	\$3,837,710	\$57,883				
5	\$1,713,728	\$298,542	\$3,644,328	\$65,031				
6	\$1,700,573	\$265,441	\$3,459,824	\$58,794				
7	\$1,687,851	\$251,789	\$3,283,863	\$56,701				
8	\$1,675,592	\$238,787	\$3,116,118	\$51,402				
9	\$1,663,827	\$259,897	\$2,956,266	\$57,084				
10	\$1,652,586	\$246,374	\$2,803,993	\$55,089				
11	\$1,641,901	\$219,272	\$2,658,991	\$50,063				
12	\$1,631,805	\$207,781	\$2,520,960	\$48,298				
13	\$1,622,331	\$223,916	\$2,389,610	\$52,980				
14	\$1,613,515	\$212,103	\$2,264,656	\$51,097				
15	\$1,605,394	\$200,877	\$2,145,824	\$49,273				
16	\$1,598,007	\$179,803	\$2,032,848	\$44,932				
17	\$1,591,396	\$192,377	\$1,925,470	\$48,911				
18	\$1,585,607	\$182,102	\$1,823,441	\$47,145				
19	\$1,580,689	\$172,348	\$1,726,521	\$45,436				
20	\$1,576,694	\$163,091	\$1,634,478	\$43,783				
Total	\$33,135,566	\$4,656,603	\$56,992,204	\$1,064,525	\$0	\$0	\$0	\$0
ı		I _				1		
	-,, -	Person-Hours of 1				Person-Hours of		
	46,551	CO ₂ Emissions Sa	aved (tons)			CO ₂ Emissions S	aved (tons)	
	\$934,470	CO ₂ Emissions Sa	aved (\$ PV)			CO ₂ Emissions S	aved (\$ PV)	

Transportation Economics

Caltrans DOTP

Cal-B/C Final Calculations

Page 20
4/27/2016

PR	RESENT VALUE C		TS	Present	Present Value	
	(roa	a 3)		Value		
Travel	Vehicle		Vehicle	of Total	of Total	NET
Time	Op. Cost	Accident	Emission	User	Project	PRESENT
Savings	Savings	Reductions	Reductions	Benefits	Costs	VALUE
				•	40.400.000	(00.100.000)
				\$0	\$2,126,000	(\$2,126,000)
				\$0	\$1,986,916	(\$1,986,916)
				\$0	\$6,987,510	(\$6,987,510)
				\$0	\$6,530,383	(\$6,530,383)
				\$0	\$6,103,162	(\$6,103,162)
				\$0	\$0	\$0
				\$0	\$0	\$0
				\$0	\$0	\$0
				\$6,590,763	\$35,649	\$6,555,114
				\$6,369,835	\$33,317	\$6,336,518
				\$6,126,088	\$31,137	\$6,094,951
				\$5,893,007	\$29,100	\$5,863,907
				\$5,721,629	\$27,197	\$5,694,433
				\$5,484,632	\$25,417	\$5,459,214
				\$5,280,204	\$23,755	\$5,256,449
				\$5,081,899	\$22,201	\$5,059,698
				\$4,937,074	\$20,748	\$4,916,326
				\$4,758,042	\$19,391	\$4,738,651
				\$4,570,227	\$18,122	\$4,552,105
				\$4,408,843	\$16,937	\$4,391,907
				\$4,288,837	\$15,829	\$4,273,009
				\$4,141,370	\$14,793	\$4,126,577
				\$4,001,367	\$13,825	\$3,987,542
				\$3,855,590	\$12,921	\$3,842,669
				\$3,758,154	\$12,076	\$3,746,079
				\$3,638,295	\$11,286	\$3,627,009
				\$3,524,994	\$10,547	\$3,514,447
				\$3,418,046	\$9,857	\$3,408,189
\$0	\$0	\$0	\$0	\$95,848,898	\$24,138,077	\$71,710,822

Person-Hours of Time Saved CO₂ Emissions Saved (tons)
CO₂ Emissions Saved (\$ PV)

INTERNAL RATE OF RETURN ON INVESTMENT AND PAYBACK PERIOD

	USEF	R BENEFITS IN C	ONSTANT DOLL	ARS	USE		CONSTANT DOLL id 2)	ARS
	Travel	Vehicle		Vehicle	Travel	Vehicle `		Vehicle
Year	Time	Op. Cost	Accident	Emission	Time	Op. Cost	Accident	Emission
Construc	Savings ction Period	Savings	Reductions	Reductions	Savings	Savings	Reductions	Reductions
1	Stion Period							
2								
3								
4								
5								
6								
7								
8								
Project C	Open							
1	\$2,482,624	\$403,475	\$6,275,756	\$82,031				
2	\$2,634,518	\$449,807	\$6,381,804	\$93,274				
3	\$2,796,014	\$456,969	\$6,487,853	\$96,323				
4	\$2,967,799	\$464,131	\$6,593,901	\$99,453				
5	\$3,150,618	\$548,857	\$6,699,949	\$119,557				
6	\$3,345,284	\$522,163	\$6,805,998	\$115,656				
7	\$3,552,676	\$529,979	\$6,912,046	\$119,347				
8	\$3,773,754	\$537,795	\$7,018,094	\$115,766				
9	\$4,009,565	\$626,312	\$7,124,143	\$137,564				
10	\$4,261,250	\$635,285	\$7,230,191	\$142,050				
11	\$4,530,057	\$604,977	\$7,336,239	\$138,126				
12	\$4,817,356	\$613,402	\$7,442,287	\$142,582				
13	\$5,124,644	\$707,309	\$7,548,336	\$167,355				
14	\$5,453,571	\$716,892	\$7,654,384	\$172,703				
15	\$5,805,951	\$726,476	\$7,760,432	\$178,196				
16	\$6,183,782	\$695,780	\$7,866,481	\$173,872				
17	\$6,589,276	\$796,547	\$7,972,529	\$202,520				
18	\$7,024,878	\$806,784	\$8,078,577	\$208,869				
19	\$7,493,303	\$817,022	\$8,184,626	\$215,389				
20	\$7,997,568	\$827,260	\$8,290,674	\$222,084				
Total	\$93,994,490	\$12,487,223	\$145,664,300	\$2,942,719	\$0	\$0	\$0	\$0

USER BENEFITS IN CONSTANT DOLLARS (road 3)		Total User	Total Project	ANNUAL	CUMULATIVE		
Travel	Vehicle	u 3)	Vehicle	Benefits in	Costs in	RETURNS	RETURNS
Time		Assistant					
	Op. Cost	Accident	Emission	Constant Dollars	Constant Dollars	ON INVESTMENT	AFTER PROJ OPENS
Savings	Savings	Reductions	Reductions	Dollars	Dollars	INVESTMENT	PROJ OPENS
				(0)	CO 400 000	(fto 400 000)	
				\$0	\$2,126,000	(\$2,126,000)	
				\$0	\$2,126,000	(\$2,126,000)	
				\$0	\$8,000,000	(\$8,000,000)	
				\$0	\$8,000,000	(\$8,000,000)	
				\$0	\$8,000,000	(\$8,000,000)	
				\$0	\$0	\$0	
				\$0	\$0	\$0	
				\$0	\$0	\$0	
				\$9,243,886	\$50,000	\$9,193,886	\$9,193,886
				\$9,559,404	\$50,000	\$9,509,404	\$18,703,291
				\$9,837,159	\$50,000	\$9,787,159	\$28,490,450
				\$10,125,284	\$50,000	\$10,075,284	\$38,565,733
				\$10,518,982	\$50,000	\$10,468,982	\$49,034,715
				\$10,789,100	\$50,000	\$10,739,100	\$59,773,816
				\$11,114,047	\$50,000	\$11,064,047	\$70,837,863
				\$11,445,409	\$50,000	\$11,395,409	\$82,233,272
				\$11,897,584	\$50,000	\$11,847,584	\$94,080,857
				\$12,268,775	\$50,000	\$12,218,775	\$106,299,631
				\$12,609,400	\$50,000	\$12,559,400	\$118,859,031
				\$13,015,628	\$50,000	\$12,965,628	\$131,824,659
				\$13,547,644	\$50,000	\$13,497,644	\$145,322,304
				\$13,997,551	\$50,000	\$13,947,551	\$159,269,855
				\$14,471,055	\$50,000	\$14,421,055	\$173,690,909
				\$14,919,915	\$50,000	\$14,869,915	\$188,560,825
				\$15,560,872	\$50,000	\$15,510,872	\$204,071,697
				\$16,119,109	\$50,000	\$16,069,109	\$220,140,806
				\$16,710,340	\$50,000	\$16,660,340	\$236,801,146
				\$17,337,586	\$50,000	\$17,287,586	\$254,088,732
				ψ.1,001,000	φου,σου	ψ.7,207,000	\$20 1,000,1 OL
\$0	\$0	\$0	\$0	\$255,088,732	\$29,252,000	\$225,836,732	

Total Construction Costs

\$28,252,000

Years After Construction Begins	ANNUAL RETURNS ON INVESTMENT
1	(\$2,126,000)
2	(\$2,126,000)
3	(\$8,000,000)
4	(\$8,000,000)
5	(\$8,000,000)
6	\$9,193,886
7	\$9,509,404
8	\$9,787,159
9	\$10,075,284
10	\$10,468,982
11	\$10,739,100
12	\$11,064,047
13	\$11,395,409
14	\$11,847,584
15	\$12,218,775
16	\$12,559,400
17	\$12,965,628
18	\$13,497,644
19	\$13,947,551
20	\$14,421,055
21	\$14,869,915
22	\$15,510,872
23	\$16,069,109
24	\$16,660,340
25	\$17,287,586
26	\$0
27	\$0
28	\$0

Internal Rate of Return

25.64%

Payback Period

3 years

The INTERNAL RATE OF RETURN (IRR) is the discount rate at which benefits and costs break even (are equal). For a project with an IRR greater than the Discount Rate, benefits are greater than costs, and the project has a positive economic value. The IRR allows projects with different costs, different benefit flows, and different time periods to be compared.

The PAYBACK PERIOD is the number of years it takes for the net benefits (benefits minus costs) to equal, or payback, the initial construction costs. For a project with a Payback Period longer than the life-cycle of the project, initial construction costs are not recovered. The Payback Period varies inversely with the Benefit-Cost Ratio: shorter Payback Period yields higher Benefit-Cost.

Parameters

This page contains all economic values and rate tables.
To update economic values automatically, change "Economic Update Factor."

avel Time Parameters		Value	Units	
Otatawida Avena a Havelu Mana				
Statewide Average Hourly Wage	\$	26.63	\$/hr	
Heavy and Light Truck Drivers				
Average Hourly Wage	\$	20.03	\$/hr	
Benefits and Costs	\$	10.40	\$/hr	
benefits and Costs	Þ	10.40	\$/nr	
Value of Time				
Automobile	\$	12.92	\$/hr/per	
Truck	\$	24.93	\$/hr/veh	
Auto & Truck Composite	Ť		\$/hr/veh	
Transit	\$	12.92	\$/hr/per	
Out-of-Vehicle Travel	Ť	2	times	
Incident-Related Travel		3	times	
Travel Time Uprater		1.2%	annual incr	
hicle Operating Cost Parameters		1.270	a maa mo	
Average Fuel Price Automobile (regular unleaded)	\$	3.08	\$/gal	
	_			
Truck (diesel)	\$	3.27	\$/gal	
Sales and Fuel Taxes				
State Sales Tax (gasoline)		2.25%	%	
State Sales Tax (diesel)	<u> </u>	9.00%	%	
Average Local Sales Tax		0.50%	%	
Federal Fuel Excise Tax (gasoline)	\$	0.184	\$/gal	
Federal Fuel Excise Tax (diesel)	\$	0.244	\$/gal	
State Fuel Excise Tax (gasoline)	\$	0.300	\$/gal	
State Fuel Excise Tax (diesel)	\$	0.130	\$/gal	
Fuel Cost Per Gallon (Exclude Taxes)				
Automobile	\$	2,50	\$/gal	
Truck	S	2.60	\$/gal	
		<u> </u>		
Non-Fuel Cost Per Mile				
Automobile	\$	0.319	\$/mi	
Truck	\$	0.440	\$/mi	
Idling Speed for Op. Costs and Emissions		5	mph	
•		5	прп	
cident Cost Parameters				
Cost of a Fatality	\$	9,600,000	\$/event	
Cost of an Injury				
Level A (Severe)	\$	1,008,000	\$/event	
Level B (Moderate)	\$	451,200	\$/event	
Level C (Minor)	\$	28,800	\$/event	
Cost of Property Damage	\$	4,198	\$/event	
Cost of Highway Accident	\$	10,600,000	\$/accident	
Cost of Highway Accident		272,600	\$/accident	
Fatal Accident			φ, ασσιαστιτ	
Fatal Accident Injury Accident	\$		\$/accident	
Fatal Accident Injury Accident PDO Accident		17,000 151,800	\$/accident \$/accident	
Fatal Accident Injury Accident PDO Accident Average Cost	\$	17,000		
Fatal Accident Injury Accident PDO Accident Average Cost Statewide Highway Accident Rates	\$	17,000 151,800	\$/accident	
Fatal Accident Injury Accident PDO Accident Average Cost Statewide Highway Accident Rates Fatal Accident	\$	17,000 151,800 0.007	\$/accident per mil veh-mi	
Fatal Accident Injury Accident PDO Accident Average Cost Statewide Highway Accident Rates	\$	17,000 151,800 0.007 0.27	\$/accident	

Sources: 1) Office of Management and Budget (OMB), 2) Review of OMB and State Treasurer's Office data, 3) Bureau of Labor Statistics (BLS) OES, 4) BLS Employment Cost Index, 5) USDOT Department Guidance, 6) California Department of Transportation TSI and Traffic Operations, 7) IDAS model, 8) AAA Daily Fuel Gauge Report, 9) California Board of Equalization, 10) AAA Your Driving Costs, 11) American Transportation Research Institute, 12) National Safety Council, 13) TASAS summary 2009

TIGER Sources: 1) OMB GDP and Deflators Used in Historical Tables 1940-2019 (Table 10.1), 2) TIGER Benefit-Cost Analysis Resource Guide (Accident Cost Parameters: Fatality, Injury (Severe=>Serious), Emissions), 3) EAB's Value of Time Yearly Update, 4) EIA Fuel Cost

ay Operations Parameters				
		Value	Units	
Maximum V/C Ratio		1.56	-	
Percent ADT in Peak Period		41.0%	%	
Percent ADT in Average Peak Hour		8.2%	%	
Annualization Factor	[365	days/yr	
			Capacity	Dep. Rate
	Alpha	Beta	(vphpl)	(vphpl)
Freeway	0.20	10	2,000	1,800
Expressway	0.20	10	2,000	1,800
Conventional Highway	0.05	10	800	1,400
HOV Lanes	0.55	8	1,600	
			Capacity	
Non-HOV Lanes	Alpha	Beta	(vphpl)	
No Build	0.05	10	800	
Build	0.05	10	800	

Sources: 15) Highway Capacity Manual, 16) NCHRP 387, 17) PeMS data

Travel Demand Tables

Project Types Highway Capacity Expansion Please select a type of highway project TRUE GenHwy FALSE HOV FALSE HOT General Highway HOV Lane Addition Enter HOV restriction in section 1B HOT Lane Addition Include toll payers as HOVs & check AVOs Passing Lane FALSE Passing Enter a truck speed in section 1B Intersection FALSE Intersect Remember to run model for both roads Bypass FALSE Bypass Remember to run model for both roads Queuing FALSE Queuing Add arrival rate & check departure rate in 1B Pavement FALSE Pavement Enter pavement condition in section 1B Rail or Transit Cap Expansion Please select a type of rail or transit project FALSE PassRail Passenger Rail Enter data in both sections 1B & 1E Light-Rail (LRT) FALSE LRT FALSE Bus Enter data in both sections 1B & 1E Bus Enter data in both sections 1B & 1E Hwy-Rail Grade Crossing FALSE HwyRail Put hwy design in 1B, safety in 1C & crossing in 1D Hwy Operational Improvement Please select a type of op. improvement Auxiliary Lane Freeway Connector FALSE AuxLane Enter ramp design speed & on-ramp volume Check percent traffic in weave in section 1B FALSE FreeConn FALSE HOVConn HOV Connector Check percent traffic in weave in section 1B HOV Drop Ramp FALSE HOVDrop Check percent traffic in weave in section 1B Off-Ramp Widening FALSE OffRamp Check percent traffic in weave in section 1B On-Ramp Widening FALSE OnRamp Enter on-ramp volume & metering strategy FALSE HOV2to3 HOV-2 to HOV-3 Conv Check AVOs & trips in sections 1B & 2D HOT Lane Conversion FALSE HOTConv Check AVOs & trips in sections 1B & 2D Transp Mgmt Systems (TMS) Please select a type of TMS project FALSE RM Ramp Metering Enter model data, if avail, in sections 2A & 2C Ramp Metering Signal Coord FALSE AM Enter model data, if avail, in sections 2A & 2C Incident Management Enter model data, if avail, in sections 2A & 2C Traveler Information FALSE TI Enter model data, if avail, in sections 2A & 2C Arterial Signal Management FALSE ASM Complete only sections 1A, 1E & 2C Transit Vehicle Location (AVL) FALSE AVL Enter transit agency costs in section 1D Transit Vehicle Signal Priority FALSE SigPriority Check travel time in section 1D Bus Rapid Transit (BRT) FALSE BRT Enter free-flow bus lane speed in section 1B NoAdj TMSLookup TRUE UserAdjInputs TMS Lookup Code User Modified Inputs

	DEMA	AND FOR TR					
(percent of total daily travel)							
Number of		Uri	ban				
Hours in	So. Ca	lifornia	No. Ca	lifornia	Rı	ıral	
Peak Period	Fwy/Exp	Other	Fwy/Exp	Other	Fwy/Exp	Other	
1	8.6%	8.6%	8.6%	8.6%	8.6%	8.6%	
2	17.2%	17.2%	17.2%	17.2%	17.2%	17.2%	
3	25.8%	25.8%	25.8%	25.8%	25.8%	25.8%	
4	34.1%	34.1%	34.1%	34.1%	34.1%	34.1%	
5	41.0%	41.0%	41.0%	41.0%	41.0%	41.0%	
6	47.3%	47.3%	47.3%	47.3%	47.3%	47.3%	
7	53.5%	53.5%	53.5%	53.5%	53.5%	53.5%	
8	59.6%	59.6%	59.6%	59.6%	59.6%	59.6%	
9	65.6%	65.6%	65.6%	65.6%	65.6%	65.6%	
10	71.1%	71.1%	71.1%	71.1%	71.1%	71.1%	
11	76.5%	76.5%	76.5%	76.5%	76.5%	76.5%	
12	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	
13	86.9%	86.9%	86.9%	86.9%	86.9%	86.9%	
14	89.9%	89.9%	89.9%	89.9%	89.9%	89.9%	
15	92.7%	92.7%	92.7%	92.7%	92.7%	92.7%	
16	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	
17	96.7%	96.7%	96.7%	96.7%	96.7%	96.7%	
18	97.9%	97.9%	97.9%	97.9%	97.9%	97.9%	
19	98.9%	98.9%	98.9%	98.9%	98.9%	98.9%	
20	99.5%	99.5%	99.5%	99.5%	99.5%	99.5%	
21	99.7%	99.7%	99.7%	99.7%	99.7%	99.7%	
22	99.8%	99.8%	99.8%	99.8%	99.8%	99.8%	
23	99.9%	99.9%	99.9%	99.9%	99.9%	99.9%	
24	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	

Source: California Department of Transportation, 2000-2001 California Statewide Travel Survey Weekday Travel Report, June 2003

Operating Cost Tables

FUEL CONSUMPTION RATES (gal/veh-mi)

Speed	Auto*	Truck	
5	0.1439	0.2234	
6	0.1366	0.2130	
7	0.1293	0.2026	
9	0.1220 0.1147	0.1922 0.1818	
10	0.1147	0.1714	
11	0.1025	0.1631	
12	0.0977	0.1548	
13	0.0929	0.1466	
14	0.0880	0.1383	
15	0.0832	0.1300	
16	0.0800	0.1247	
17	0.0767	0.1193	
18 19	0.0735	0.1139 0.1086	
20	0.0702	0.1032	
21	0.0648	0.0997	
22	0.0626	0.0962	
23	0.0603	0.0926	
24	0.0581	0.0891	
25	0.0559	0.0856	
26	0.0544	0.0832	
27 28	0.0529	0.0809	
29	0.0515	0.0762	
30	0.0300	0.0702	
31	0.0475	0.0723	
32	0.0465	0.0708	
33	0.0455	0.0693	
34	0.0445	0.0678	
35	0.0435	0.0663	
36	0.0429	0.0654	
37 38	0.0423	0.0645	
38	0.0417	0.0635 0.0626	
40	0.0405	0.0617	
41	0.0402	0.0613	
42	0.0400	0.0609	
43	0.0397	0.0604	
44 45	0.0394	0.0600	
46	0.0391	0.0596	
47	0.0391	0.0596	
48	0.0391	0.0596	
49	0.0391	0.0596	
50	0.0390	0.0596	
51 52	0.0393	0.0600	
52	0.0396	0.0604	
54	0.0401	0.0612	
55	0.0404	0.0617	
56	0.0410	0.0626	
57 58	0.0416	0.0635	
58 59	0.0422	0.0644	
60	0.0433	0.0662	
61	0.0443	0.0677	
62	0.0453	0.0692	
63	0.0462	0.0708	
64 65	0.0472 0.0482	0.0723 0.0738	
66	0.0488	0.0752	
67	0.0495	0.0767	
68	0.0502	0.0781	
69 70	0.0509	0.0796	
70 71	0.0515 0.0516	0.0810	
72	0.0516	0.0821	
73	0.0516	0.0842	
74	0.0517	0.0854	
	0.0517	0.0865	
75 76	0.0540		
76	0.0518	0.0882	
	0.0518 0.0518 0.0519	0.0900 0.0918	
76 77	0.0518	0.0900	

* Includes motorcycles & motorhomes Note: Five mph is best estimate for idling

Source: California Air Resources Board, EMFAC2011, 2011 & 2031 average

Accident Tables

Source: 2009 SWITRS Annual Report, Table 8C

RATES FOR TRANSIT ACCIDENT EVENTS (events/million veh-mi) Event Pass Train Light Rail Bus Fatality 0.0428 0.2517 0.0351 0.1897 Injury All Accidents 3.6283 3.8909 0.2519 7.4952 3.8924

Source: USDOT, Transportation Statistics Annual Report, Table 2-33, 2002 to 2008 average

NUMBER OF FATALITIES

events/accident

Accident Type	Urban	Suburban	Rural	Average
Fatal Accident	1.09	1.11	1.16	1.13

NUMBER OF INJURIES

(events/accident)

Accident Type	Urban	Suburban	Rural	Average
Fatal Accident	0.84	1.02	1.26	1.06
Injury Accident	1.42	1.43	1.51	1.44

NUMBER OF VEHICLES INVOLVED

(events/accident)

Accident Type	Urban	Suburban	Rural	Average
Fatal Accident	1.69	1.63	1.61	1.65
Injury Accident	2.08	1.97	1.58	1.96
PDO Accident	2.03	1.94	1.62	1.95

DISTRIBUTION OF ACCIDENT TYPES

(percent of accidents)

Accident Type	Urban	Suburban	Rural	Average
Fatal Accident	0.50%	0.74%	2.11%	0.83%
Injury Accident	32.08%	32.90%	37.91%	33.27%
PDO Accident	67.42%	66.37%	59.98%	65.90%

Source: California Department of Transportation, TASAS Unit, 2007 to 2009 average

_	i

(\$/accident)							
Accident Type	Urban	Suburban	Rural	Average			
Fatal Accident	\$10,600,000	\$10,900,000	\$11,400,000	\$11,100,000			
Injury Accident	\$272,600	\$274,000	\$287,200	\$275,800			
PDO Accident	\$17,000	\$16,300	\$13,600	\$16,400			
All Types	\$151,800	\$181,100	\$357,800	\$194,500			

COST OF HIGHWAY ACCIDENTS

Source: Combination of above four tables

COST OF TRANSIT ACCIDENT EVENTS

/event)

Event	Pass Train	Light Rail	Bus
Fatality	\$9,600,000	\$9,600,000	\$9,600,000
Injury	\$535,700	\$535,700	\$535,700
Prop Damage	\$82,000	\$5,800	\$2,800

Source: FTA, Transit Safety & Security Statistics, 2002 to 2007 average

COSTS OF TRANSIT ACCIDENTS

(\$/million veh-mi)

Value	Pass Train	Light Rail	Bus
Cost	\$566,400	\$3,808,300	\$2,432,200

Source: Combination of above two tables

HIGHWAY-RAIL GRADE CROSSING INCIDENTS

(units in table)

Value	Incident	Fatality	Injury
Total Events	1,500	332	608
Avg per Incident		0.2213	0.4053
Cost per Event		\$9,600,000	\$535,700

Source: FRA, Office of Safety Analysis, 5.11 - Hwy/Rail Incidents Summary Tables, California, Jan 2001 to Dec 2010

PASSING LANE ACCIDENT REDUCTION FACTORS

(rate with passing lane/rate without passing lane)

Minimum ADT	Fatality	Injury	PDO
0	25.0%	69.4%	92.6%
5,000	19.2%	80.3%	96.5%
10,000	84.0%	57.7%	97.8%

Source: Taylor and Jain, 1991

HIGHWAY EMISSIONS FACTORS (g/mi) Model Year 2011

Mode	Speed	CO	CO ₂	NO _X	PM ₁₀	SO _X	VOC
Auto	0	5.2339	79.62	0.3731	0.0044	0.0000	0.7131
	5 6	5.7109 5.5208	1200.44 1138.67	0.4530 0.4412	0.0640 0.0627	0.0122 0.0116	0.6503 0.6153
	7	5.3308	1076.91	0.4412	0.0614	0.0110	0.5802
	8	5.1407	1015.14	0.4176	0.0601	0.0104	0.5452
	9	4.9507	953.38	0.4058	0.0588	0.0098	0.5102
	10	4.7606	891.61	0.3940	0.0575	0.0091	0.4751
	11	4.6222	850.74	0.3852	0.0567	0.0087	0.4539
	12	4.4838	809.87	0.3764	0.0559	0.0083	0.4326
	13	4.3453	769.00	0.3677	0.0551	0.0079	0.4114
	14	4.2069	728.13	0.3589	0.0543	0.0075	0.3901
	15	4.0685	687.26	0.3502	0.0535	0.0071	0.3689
	16	3.9674	659.79	0.3438	0.0531	0.0068	0.3558
	17	3.8664	632.31	0.3373	0.0526	0.0065	0.3428
	18	3.7653	604.84	0.3309	0.0521	0.0063	0.3298
	19	3.6643	577.36	0.3245	0.0516	0.0060	0.3168
	20	3.5632	549.88	0.3181	0.0512	0.0057	0.3038
	21	3.4877	531.23	0.3134	0.0509	0.0055	0.2958
	22	3.4122	512.58	0.3087	0.0506	0.0053	0.2878
	23	3.3367	493.93	0.3040	0.0503	0.0051	0.2798
	24	3.2612	475.28	0.2993	0.0500	0.0050	0.2718
	25	3.1857	456.63	0.2947	0.0497	0.0048	0.2638
	26	3.1288	444.02	0.2914	0.0495	0.0046	0.2588
	27	3.0718	431.40	0.2881	0.0493	0.0045	0.2538
	28	3.0149	418.78	0.2847	0.0491	0.0044	0.2488
	29	2.9579	406.16	0.2814	0.0489	0.0043	0.2437
	30	2.9010	393.55	0.2781	0.0487	0.0041	0.2387
	31	2.8584	385.23	0.2759	0.0486	0.0040	0.2356
	32	2.8159	376.92	0.2738	0.0485	0.0040	0.2325
	33	2.7734	368.60	0.2716	0.0483	0.0039	0.2294
	34 35	2.7309 2.6883	360.29 351.97	0.2694	0.0482 0.0481	0.0038	0.2263
	36	2.6580	346.91	0.2659	0.0481	0.0037	0.2231
	37	2.6277	341.84	0.2647	0.0479	0.0037	0.2219
	38	2.5974	336.77	0.2634	0.0479	0.0036	0.2178
	39	2.5671	331.70	0.2622	0.0478	0.0035	0.2160
	40	2.5368	326.63	0.2609	0.0477	0.0034	0.2142
	41	2.5180	324.21	0.2605	0.0477	0.0034	0.2134
	42	2.4992	321.78	0.2601	0.0476	0.0034	0.2127
	43	2.4804	319.36	0.2597	0.0476	0.0034	0.2119
	44	2.4615	316.93	0.2593	0.0475	0.0034	0.2112
	45	2.4427	314.51	0.2589	0.0475	0.0033	0.2104
	46	2.4360	314.44	0.2593	0.0475	0.0033	0.2105
	47 48	2.4293 2.4227	314.37 314.30	0.2597 0.2601	0.0475 0.0474	0.0033	0.2107
	49	2.4227	314.23	0.2605	0.0474	0.0033	0.2100
	50	2.4093	314.17	0.2609	0.0474	0.0033	0.2111
	51	2.4171	316.46	0.2621	0.0474	0.0033	0.2121
	52	2.4249	318.75	0.2633	0.0474	0.0034	0.2132
	53	2.4328	321.05	0.2645	0.0474	0.0034	0.2142
	54	2.4406	323.34	0.2657	0.0474	0.0034	0.2153
	55	2.4485	325.64	0.2669	0.0474	0.0034	0.2163
	56	2.4758	330.54	0.2690	0.0475	0.0035	0.2184
	57	2.5031	335.45	0.2711	0.0475	0.0035	0.2206
	58 59	2.5304 2.5577	340.36 345.27	0.2732 0.2753	0.0475 0.0476	0.0036 0.0036	0.2227 0.2248
	60	2.5851	350.18	0.2774	0.0476	0.0037	0.2270
	61	2.6411	358.30	0.2805	0.0476	0.0038	0.2305
	62	2.6972	366.41	0.2836	0.0477	0.0039	0.2341
	63	2.7533	374.53	0.2868	0.0478	0.0039	0.2377
	64	2.8094	382.64	0.2899	0.0478	0.0040	0.2413
	65	2.8654	390.76	0.2930	0.0479	0.0041	0.2449
	66	2.9386	396.35	0.2952	0.0479	0.0042	0.2489
	67 68	3.0117 3.0848	401.95 407.55	0.2973 0.2995	0.0480 0.0480	0.0042 0.0043	0.2528 0.2568
	69	3.1580	413.15	0.2995	0.0480	0.0043	0.2608
	70	3.2311	418.75	0.3038	0.0481	0.0043	0.2647
	71	3.3211	418.85	0.3042	0.0481	0.0044	0.2688
	72	3.4111	418.95	0.3045	0.0482	0.0044	0.2729
	73	3.5012	419.04	0.3049	0.0482	0.0044	0.2770
	74	3.5912	419.14	0.3052	0.0482	0.0044	0.2811
	75	3.6812	419.24	0.3056	0.0482	0.0044	0.2852
	76	3.8430 4.0048	419.40	0.3060 0.3065	0.0482	0.0044 0.0044	0.2919
	77 78	4.0048	419.55 419.70	0.3065	0.0482 0.0482	0.0044	0.2986
	79	4.1000	419.70	0.3075	0.0482	0.0044	0.3033
	80	4.4902	420.01	0.3079	0.0482	0.0044	0.3186
	I	1		-			

HIGHWAY EMISSIONS FACTORS (g/mi) Model Year 2031

Mode	Speed	CO	CO ₂	NO _x	PM ₁₀	SO _Y	VOC
Auto	0	1.3628	80.38	0.0771	0.0049	0.0000	0.2019
	5	1.3760	1208.90	0.1323	0.0584	0.0122	0.1693
	6	1.3510	1146.73	0.1290	0.0574	0.0116	0.1612
	7	1.3260	1084.55	0.1258	0.0564	0.0110	0.1530
	8	1.3011	1022.37	0.1225	0.0554	0.0104	0.1449
	9	1.2761	960.19	0.1193	0.0544	0.0097	0.1367
	10	1.2511	898.02	0.1160	0.0534	0.0091	0.1286
	11	1.2273	856.86	0.1135	0.0528	0.0087	0.1235
	12	1.2034	815.71	0.1109	0.0523	0.0083	0.1185
	13	1.1796	774.55	0.1084	0.0517	0.0079	0.1135
	14	1.1558	733.40	0.1058	0.0511	0.0075	0.1085
	15	1.1320	692.24	0.1033	0.0505	0.0071	0.1035
	16	1.1120	664.57	0.1014	0.0502	0.0068	0.1005
	17	1.0920	636.90	0.0994	0.0499	0.0065	0.0975
	18	1.0721	609.23	0.0975	0.0495	0.0062	0.0944
	19 20	1.0521	581.56	0.0955	0.0492	0.0060	0.0914
	20	1.0322 1.0154	553.89 535.11	0.0936 0.0921	0.0488 0.0486	0.0057 0.0055	0.0884
	21	0.9985	516.34	0.0921	0.0486	0.0053	0.0865
	23	0.9965	497.56	0.0906	0.0484	0.0053	0.0828
	24	0.9649	478.79	0.0876	0.0482	0.0031	0.0828
	25	0.9481	460.01	0.0862	0.0478	0.0048	0.0791
	26	0.9340	447.31	0.0850	0.0478	0.0048	0.0791
	27	0.9340	434.61	0.0839	0.0477	0.0046	0.0779
	28	0.9057	421.90	0.0828	0.0473	0.0043	0.0757
	29	0.8916	409.20	0.0817	0.0474	0.0044	0.0745
	30	0.8774	396.50	0.0806	0.0473	0.0042	0.0743
	31	0.8657	388.13	0.0798	0.0471	0.0040	0.0727
	32	0.8540	379.77	0.0791	0.0471	0.0039	0.0721
	33	0.8422	371.40	0.0783	0.0469	0.0039	0.0714
	34	0.8305	363.04	0.0775	0.0468	0.0038	0.0708
	35	0.8188	354.67	0.0767	0.0468	0.0037	0.0701
	36	0.8093	349.58	0.0762	0.0467	0.0036	0.0698
	37	0.7999	344.48	0.0756	0.0466	0.0036	0.0695
	38	0.7904	339.39	0.0751	0.0466	0.0035	0.0692
	39	0.7810	334.29	0.0746	0.0465	0.0035	0.0689
	40	0.7716	329.19	0.0740	0.0465	0.0034	0.0686
	41	0.7645	326.76	0.0738	0.0465	0.0034	0.0686
	42	0.7574	324.33	0.0735	0.0464	0.0034	0.0685
	43	0.7504	321.90	0.0732	0.0464	0.0034	0.0685
	44 45	0.7433 0.7362	319.47 317.03	0.0729 0.0726	0.0464 0.0464	0.0033	0.0685 0.0685
	46	0.7302	316.98	0.0726	0.0463	0.0033	0.0688
	47	0.7319	316.94	0.0725	0.0463	0.0033	0.0690
	48	0.7273	316.89	0.0723	0.0463	0.0033	0.0693
	49	0.7188	316.84	0.0724	0.0463	0.0033	0.0696
	50	0.7144	316.79	0.0723	0.0463	0.0033	0.0699
	51	0.7135	319.12	0.0725	0.0463	0.0033	0.0705
	52	0.7126	321.45	0.0726	0.0463	0.0034	0.0711
	53	0.7116	323.78	0.0728	0.0463	0.0034	0.0717
	54	0.7107	326.11	0.0729	0.0463	0.0034	0.0723
	55	0.7098	328.45	0.0731	0.0463	0.0034	0.0729
	56	0.7137	333.43	0.0735	0.0464	0.0035	0.0739
	57 58	0.7176 0.7215	338.41 343.39	0.0738 0.0742	0.0464 0.0464	0.0035 0.0036	0.0749
	58 59	0.7215	343.39	0.0742	0.0464	0.0036	0.0760
	60	0.7293	353.35	0.0750	0.0464	0.0037	0.0770
	61	0.7407	361.57	0.0756	0.0465	0.0037	0.0797
	62	0.7520	369.78	0.0762	0.0465	0.0038	0.0737
	63	0.7634	378.00	0.0769	0.0466	0.0039	0.0830
	64	0.7747	386.22	0.0775	0.0466	0.0040	0.0847
	65	0.7861	394.44	0.0781	0.0467	0.0041	0.0863
	66	0.8123	400.15	0.0786	0.0467	0.0042	0.0888
	67	0.8386	405.86	0.0791	0.0467	0.0042	0.0912
	68	0.8648	411.57	0.0796	0.0468	0.0043	0.0936
	69 70	0.8911 0.9173	417.28 422.99	0.0801 0.0806	0.0468 0.0468	0.0043 0.0044	0.0960 0.0984
	70 71	0.9173	422.99	0.0806	0.0468	0.0044	0.0984
	72	1.0177	423.43	0.0810	0.0468	0.0044	0.1020
	73	1.0679	423.65	0.0812	0.0468	0.0044	0.1093
	74	1.1181	423.87	0.0814	0.0468	0.0044	0.1129
	75	1.1683	424.09	0.0816	0.0468	0.0044	0.1165
	76	1.2588	424.42	0.0818	0.0468	0.0044	0.1224
	77	1.3492	424.76	0.0821	0.0468	0.0044	0.1284
	78	1.4396	425.09	0.0823	0.0468	0.0044	0.1343
	79	1.5300	425.43	0.0826 0.0828	0.0469 0.0469	0.0044	0.1403 0.1463
	80	1.6204	425.77				

Emissions Tables

									_	_								-	_
	Truck	0	7.7807	88.95	0.9968	0.0033	0.0000	0.8010			Truck	0	2.4976	90.05	0.4876	0.0028	0.0000	0.2977	
		5	8.2113	1871.17	1.4852	0.0764	0.0190	0.8648				5	2.1294	1891.53	0.3786	0.0651	0.0191	0.2464	
		6	7.9348	1783.22	1.4539	0.0752	0.0181	0.8200				6	2.0765	1802.78	0.3708	0.0642	0.0182	0.2360	
		7	7.6582	1695.27	1.4225	0.0739	0.0172	0.7751				7	2.0236	1714.03	0.3631	0.0633	0.0173	0.2256	
		8	7.3817	1607.32	1.3912	0.0727	0.0164	0.7303				8	1.9707	1625.28	0.3553	0.0625	0.0164	0.2151	
		9	7.1052	1519.37	1.3599	0.0714	0.0155	0.6854				9	1.9178	1536.53	0.3475	0.0616	0.0156	0.2047	
		10	6.8287	1431.43	1.3286	0.0702	0.0146	0.6406				10	1.8650	1447.78	0.3397	0.0608	0.0147	0.1942	
		11	6.5519	1361.83	1.2955	0.0691	0.0139	0.6068				11	1.8056	1377.21	0.3314	0.0601	0.0140	0.1876	
		12	6.2751	1292.24	1.2625	0.0680	0.0132	0.5731				12	1.7462	1306.63	0.3231	0.0595	0.0133	0.1810	
		13	5.9984	1222.65	1.2294	0.0669	0.0125	0.5394				13	1.6868	1236.06	0.3148	0.0589	0.0126	0.1745	
		14	5.7216	1153.05	1.1964	0.0658	0.0118	0.5056				14	1.6275	1165.48	0.3065	0.0582	0.0118	0.1679	
		15	5.4448	1083.46	1.1633	0.0647	0.0111	0.4719				15	1.5681	1094.91	0.2981	0.0576	0.0111	0.1613	
		16	5.2607	1038.29	1.1404	0.0640	0.0106	0.4514				16	1.5259	1049.14	0.2923	0.0572	0.0107	0.1573	
		17	5.0765	993.12	1.1176	0.0633	0.0102	0.4310				17	1.4836	1003.38	0.2865	0.0568	0.0102	0.1534	
		18	4.8924	947.96	1.0947	0.0626	0.0097	0.4105				18	1.4414	957.61	0.2806	0.0564	0.0098	0.1494	
		19	4.7082	902.79	1.0719	0.0619	0.0093	0.3901				19	1.3992	911.84	0.2748	0.0560	0.0093	0.1455	
		20	4.5241	857.62	1.0490	0.0612	0.0033	0.3696				20	1.3570	866.08	0.2690	0.0556	0.0089	0.1415	
		21	4.3967	827.81	1.0337	0.0607	0.0085	0.3568				21	1.3255	835.90	0.2650	0.0553	0.0086	0.1391	
		22	4.2692	797.99	1.0337	0.0602	0.0082	0.3440				22	1.2941	805.73	0.2611	0.0551	0.0083	0.1366	
		23	4.1418	768.18	1.0032	0.0597	0.0032	0.3440				23	1.2627	775.56	0.2571	0.0548	0.0080	0.1341	
		24	4.0144	738.36	0.9879	0.0592	0.0079	0.3311				24	1.2027	745.39	0.2571	0.0546	0.0077	0.1341	
			3.8870			0.0592		0.3055				25			0.2331	0.0548			
		25		708.54	0.9726		0.0073						1.1998	715.21			0.0074	0.1292	
		26	3.7963	688.82	0.9631	0.0584	0.0071	0.2973		I		26	1.1756	695.24	0.2467	0.0541	0.0071	0.1276	
		27	3.7057	669.09	0.9537	0.0581	0.0070	0.2890		I		27	1.1513	675.26	0.2442	0.0539	0.0069	0.1260	J
		28	3.6150	649.37	0.9442	0.0578	0.0068	0.2808		I		28	1.1271	655.29	0.2416	0.0537	0.0067	0.1244	J
		29	3.5243	629.64	0.9348	0.0574	0.0066	0.2725		I		29	1.1029	635.31	0.2391	0.0536	0.0065	0.1229	J
		30	3.4337	609.92	0.9253	0.0571	0.0064	0.2643		I		30	1.0786	615.34	0.2366	0.0534	0.0063	0.1213	J
		31	3.3683	597.14	0.9207	0.0569	0.0062	0.2589		I		31	1.0595	602.42	0.2353	0.0532	0.0062	0.1202	J
		32	3.3030	584.37	0.9162	0.0567	0.0061	0.2535		1		32	1.0403	589.49	0.2340	0.0531	0.0060	0.1192	J
		33	3.2377	571.59	0.9116	0.0565	0.0060	0.2481		I		33	1.0211	576.57	0.2327	0.0530	0.0059	0.1181	J
		34	3.1723	558.81	0.9070	0.0562	0.0058	0.2427				34	1.0019	563.65	0.2314	0.0529	0.0058	0.1171	
		35	3.1070	546.04	0.9024	0.0560	0.0057	0.2373				35	0.9828	550.73	0.2301	0.0528	0.0057	0.1160	
		36	3.0606	538.35	0.9022	0.0559	0.0056	0.2339				36	0.9674	542.95	0.2299	0.0527	0.0056	0.1153	
		37	3.0141	530.65	0.9020	0.0557	0.0055	0.2304				37	0.9520	535.17	0.2297	0.0526	0.0055	0.1146	
		38	2.9676	522.96	0.9018	0.0555	0.0054	0.2269				38	0.9367	527.39	0.2295	0.0525	0.0054	0.1140	
		39	2.9212	515.26	0.9015	0.0553	0.0054	0.2235				39	0.9213	519.62	0.2292	0.0524	0.0054	0.1133	
		40	2.8747	507.57	0.9013	0.0552	0.0053	0.2200				40	0.9060	511.84	0.2290	0.0524	0.0053	0.1126	
		41	2.8437	503.97	0.9054	0.0551	0.0052	0.2180				41	0.8937	508.20	0.2299	0.0523	0.0053	0.1122	
		42	2.8126	500.38	0.9094	0.0549	0.0052	0.2159				42	0.8814	504.57	0.2307	0.0523	0.0052	0.1118	
		43	2.7815	496.79	0.9135	0.0548	0.0052	0.2139				43	0.8690	500.94	0.2315	0.0522	0.0052	0.1113	
		44	2.7504	493.20	0.9175	0.0547	0.0051	0.2118				44	0.8567	497.30	0.2324	0.0522	0.0051	0.1109	
		45	2.7193	489.60	0.9216	0.0546	0.0051	0.2098				45	0.8444	493.67	0.2332	0.0521	0.0051	0.1105	
		46	2.7023	489.59	0.9303	0.0545	0.0051	0.2087				46	0.8347	493.67	0.2352	0.0521	0.0051	0.1103	
		47	2.6853	489.58	0.9390	0.0545	0.0051	0.2076				47	0.8251	493.67	0.2372	0.0520	0.0051	0.1100	
		48	2.6683	489.58	0.9477	0.0544	0.0051	0.2065				48	0.8154	493.67	0.2393	0.0520	0.0051	0.1098	
		49	2.6513	489.57	0.9564	0.0543	0.0051	0.2055				49	0.8057	493.67	0.2413	0.0520	0.0051	0.1096	
		50	2.6343	489.56	0.9651	0.0543	0.0051	0.2044				50	0.7960	493.67	0.2433	0.0520	0.0051	0.1094	
		51	2.6320	493.15	0.9792	0.0542	0.0051	0.2041				51	0.7888	497.33	0.2466	0.0519	0.0051	0.1093	
		52	2.6296	496.74	0.9934	0.0542	0.0052	0.2039				52	0.7816	501.00	0.2500	0.0519	0.0052	0.1093	
		53	2.6273	500.34	1.0076	0.0542	0.0052	0.2037				53	0.7743	504.66	0.2533	0.0519	0.0052	0.1092	
		54	2.6250	503.93	1.0218	0.0542	0.0052	0.2034				54	0.7671	508.32	0.2567	0.0519	0.0053	0.1091	
		55	2.6226	507.52	1.0360	0.0541	0.0053	0.2032				55	0.7599	511.99	0.2600	0.0518	0.0053	0.1091	
1 I		56	2.6377	515.24	1.0571	0.0541	0.0053	0.2038		I		56	0.7552	519.76	0.2651	0.0518	0.0054	0.1092	1
		57	2.6528	522.95	1.0783	0.0541	0.0054	0.2043		I		57	0.7505	527.54	0.2702	0.0519	0.0054	0.1093	
		58	2.6679	530.66	1.0995	0.0541	0.0055	0.2049		I		58	0.7459	535.32	0.2752	0.0519	0.0055	0.1094	
		59	2.6830	538.37	1.1207	0.0541	0.0056	0.2054		I		59	0.7412	543.10	0.2803	0.0519	0.0056	0.1094	J
		60	2.6981	546.08	1.1418	0.0541	0.0057	0.2060		I		60	0.7365	550.88	0.2854	0.0519	0.0057	0.1095	
		61	2.7365	558.91	1.1726	0.0541	0.0058	0.2075		I		61	0.7348	563.87	0.2928	0.0519	0.0058	0.1098	
1 I		62	2.7748	571.73	1.2033	0.0542	0.0059	0.2073		I		62	0.7348	576.87	0.3002	0.0519	0.0059	0.1030	1
		63	2.8132	584.55	1.2340	0.0542	0.0061	0.2107		I		63	0.7313	589.86	0.3076	0.0520	0.0061	0.1104	J
		64	2.8516	597.37	1.2647	0.0542	0.0061	0.2122		I		64	0.7313	602.86	0.3150	0.0520	0.0062	0.1104	J
		65	2.8899	610.19	1.2954	0.0542	0.0062	0.2122		I		65	0.7279	615.86	0.3224	0.0520	0.0063	0.1107	J
1 I		66	2.9429	622.24	1.3362	0.0543	0.0064	0.2152		I		66	0.7279	628.14	0.3224	0.0520	0.0065	0.1110	1
		67	2.9429	634.29	1.3362	0.0543	0.0066	0.2152		1		67	0.7328	640.43	0.3324	0.0520	0.0065	0.1112	J
		68	3.0488	646.34	1.4178	0.0543	0.0067	0.2181		I		68	0.7378	652.71	0.3525	0.0521	0.0067	0.1118	J
		69	3.1017	658.39	1.4178	0.0543	0.0067	0.2181		I		69	0.7427	665.00	0.3625	0.0521	0.0067	0.1118	J
1 I		70	3.1017	670.44	1.4586	0.0544	0.0068			I		70	0.7476			0.0521			1
								0.2210		I				677.28	0.3725		0.0070	0.1123	J
		71	3.2177	679.52	1.5549	0.0544	0.0070	0.2215		I		71	0.7653	686.73	0.3863	0.0521	0.0071	0.1123	J
		72	3.2807	688.60	1.6103	0.0545	0.0071	0.2221		I		72	0.7779	696.18	0.4001	0.0522	0.0072	0.1124	
		73	3.3436	697.68	1.6658	0.0545	0.0072	0.2226		I		73	0.7906	705.64	0.4140	0.0522	0.0073	0.1125	
		74	3.4066	706.77	1.7213	0.0546	0.0073	0.2231		I		74	0.8033	715.09	0.4278	0.0522	0.0073	0.1126	
		75	3.4696	715.85	1.7767	0.0546	0.0074	0.2237		I		75	0.8160	724.54	0.4416	0.0522	0.0074	0.1126	
		76	3.5719	730.65	1.8592	0.0547	0.0076	0.2245		I		76	0.8364	739.92	0.4622	0.0522	0.0076	0.1128	
		77	3.6741	745.45	1.9417	0.0547	0.0077	0.2253		I		77	0.8568	755.31	0.4828	0.0522	0.0077	0.1129	
		78	3.7764	760.25	2.0243	0.0547	0.0079	0.2262		I		78	0.8772	770.70	0.5034	0.0523	0.0079	0.1130	
1 I		79	3.8787	775.04	2.1068	0.0548	0.0080	0.2270		I		79	0.8976	786.08	0.5239	0.0523	0.0080	0.1132	1
		80	3.9809	789.84	2.1893	0.0548	0.0082	0.2278		1		80	0.9180	801.47	0.5445	0.0523	0.0082	0.1133	ı
11		l						J	II	ı								J	- 1

Emissions Tables

	_								
l E	Bus	0	16,2307	31.60	1.9169	0.0000	0.0000	1.1480	
		5	28.2802	2573.44	19.0484	0.9433	0.0248	3.0451	
		6	27.1830	2530.41	18.5778	0.9295	0.0243	2.9403	
		7	26.0858	2487.38	18.1073	0.9157	0.0237	2.8355	
		8	24.9885	2444.35	17.6367	0.9019	0.0232	2.7307	
		-							
		9	23.8913	2401.32	17.1662	0.8882	0.0226	2.6258	
		10	22,7941	2358.29	16.6956	0.8744	0.0221	2.5210	
		-							
		11	21.3267	2300.37	16.0232	0.8534	0.0215	2.3743	
		12	19.8593	2242.45	15.3507	0.8324	0.0210	2.2276	
		13	18.3919	2184.53	14.6782	0.8115	0.0204	2.0808	
		14	16.9246	2126.60	14.0058	0.7905	0.0199	1.9341	
		15	15.4572	2068.68	13.3333	0.7695	0.0193	1.7873	
		16	14.5867	2033.37	12.9075	0.7558	0.0188	1.6952	
		17	13.7162	1998.07				1.6031	
					12.4816	0.7420	0.0182		
		18	12.8457	1962.76	12.0557	0.7282	0.0177	1.5110	
		19	11.9752	1927.46	11.6298	0.7144	0.0171	1.4188	
		20	11.1047	1892.15	11.2040	0.7006	0.0165	1.3267	
		-							
		21	10.5723	1870.09	10.9408	0.6918	0.0165	1.2671	
		22	10.0400	1848.02	10.6777	0.6829	0.0165	1.2076	
		23	9.5076	1825.95		0.6741			
		-			10.4146		0.0165	1.1480	
		24	8.9753	1803.89	10.1514	0.6653	0.0165	1.0884	
		25	8.4430	1781.82	9.8883	0.6565	0.0165	1.0288	
		00	0.4404	4700.50	0.7000	0.0504	0.0405	0.0007	
		26	8.1131	1768.58	9.7399	0.6504	0.0165	0.9897	
ii l		27	7.7832	1755.34	9.5915	0.6443	0.0165	0.9505	
11		28	7.4533	1742.10	9,4431	0.6383	0.0165	0.9113	1
11		29	7.1234	1728.86	9.2947	0.6322	0.0165	0.8722	1
ii l									
		30	6.7935	1715.62	9.1463	0.6261	0.0165	0.8330	
		31	6.5905	1707.35	9.0884	0.6217	0.0165	0.8071	
		32	6.3875	1699.08	9.0305	0.6173	0.0165	0.7811	
		33	6.1845	1690.80	8.9726	0.6129	0.0165	0.7552	
		34	5.9815	1682.53	8.9146	0.6085	0.0165	0.7293	
		35	5.7785	1674.25	8.8567	0.6041	0.0165	0.7034	
							0.0.00		
		36	5.6621	1669.29	8.8760	0.6013	0.0165	0.6857	
		37	5.5457	1664.32	8.8953	0.5985	0.0165	0.6680	
		38	5.4293	1659.36	8.9146	0.5958	0.0165	0.6504	
		39	5.3129	1654.39	8.9339	0.5930	0.0165	0.6327	
		40	5.1965	1649.43	8.9532	0.5903	0.0165	0.6151	
		41	5,1430	1647.77	9.0531	0.5886	0.0160	0.6041	
		42	5.0895	1646.12		0.5870	0.0154	0.5930	
			0.000		9.1529				
		43	5.0360	1644.46	9.2528	0.5853	0.0149	0.5820	
		44	4.9825	1642.81	9.3526	0.5836	0.0143	0.5710	
		45	4.9290	1641.15	9,4525	0.5820	0.0138	0.5599	
		-							
		46	4.9306	1641.15	9.6478	0.5809	0.0143	0.5528	
		47	4.9323	1641.15	9.8431	0.5798	0.0149	0.5456	
		48	4.9339	1641.15	10.0383	0.5787	0.0154	0.5384	
		49	4.9356	1641.15	10.2336	0.5776	0.0160	0.5312	
		50	4.9372	1641.15	10.4289	0.5765	0.0165	0.5241	
		51	4.9935	1643.91	10.7489	0.5759	0.0165	0.5202	
		-							
		52	5.0498	1646.67	11.0688	0.5754	0.0165	0.5163	
		53	5.1061	1649.43	11.3888	0.5748	0.0165	0.5125	
11 1		54	5.1623	1652.19	11.7087	0.5743	0.0165	0.5086	1
11		55	5.2186	1654.94	12.0287	0.5737	0.0165	0.5048	1
11		56	5.3400	1660.46	12.5312	0.5737	0.0165	0.5048	1
11		57	5.4613	1665.98	13.0338	0.5737	0.0165	0.5048	1
		58	5.5827	1671.49	13.5363	0.5737	0.0165	0.5048	
11			0.00-						1
11 1		59	5.7040	1677.01	14.0389	0.5737	0.0165	0.5048	1
11		60	5.8254	1682.53	14.5414	0.5737	0.0165	0.5048	1
11 1		61	6.0334	1691.35	15.3237	0.5748	0.0165	0.5070	1
11									1
11 1		62	6.2413	1700.18	16.1059	0.5759	0.0165	0.5092	1
		63	6.4493	1709.00	16.8881	0.5770	0.0165	0.5114	
11 1		64	6.6573	1717.83	17.6704	0.5781	0.0165	0.5136	1
11 1		65	6.8653	1726.66	18.4526	0.5792	0.0165	0.5158	1
		66	7.2029	1741.55	19.6861	0.5809	0.0165	0.5213	
11 1		67	7.5405	1756.45	20.9196	0.5825	0.0165	0.5268	1
		68	7.8781	1771.34	22.1531	0.5842	0.0165	0.5323	
11				-					1
		69	8.2157	1786.24	23.3866	0.5858	0.0165	0.5379	l
11		70	8.5533	1801.13	24.6200	0.5875	0.0165	0.5434	1
11		71	9.0967	1824.30	26.6181	0.5897	0.0165	0.5533	1
11								0.000	1
11		72	9.6400	1847.47	28.6162	0.5919	0.0165	0.5632	1
11		73	10.1834	1870.64	30.6142	0.5941	0.0165	0.5732	1
II		74	10.7268	1893.81	32.6123	0.5963	0.0165	0.5831	1
11									1
II		75	11.2702	1916.98	34.6104	0.5985	0.0165	0.5930	1
11		76	12.1600	1955.59	37.9467	0.6024	0.0171	0.6074	1
II		77	13.0498	1994.21	41.2831	0.6063	0.0177	0.6217	1
		78							
II			13.9396	2032.82	44.6195	0.6101	0.0182	0.6360	1
		79	14.8294	2071.44	47.9558	0.6140	0.0188	0.6504	
II		80	15.7192	2110.05	51.2922	0.6178	0.0193	0.6647	1
ı —									•

Bus	0	6.7367	35.88	0.9329	0.0000	0.0000	0.4575	
	5	8.5199	2438.77	9.8329	0.7659	0.0243	1.0942	ì
	6	8.1853	2395.98	9.5863	0.7576	0.0238	1.0616	ì
	7	7.8508	2353.19	9.3398	0.7494	0.0233	1.0290	ì
	8	7.5162	2310.39	9.0932	0.7411	0.0233	0.9964	ì
	9	7.1816	2267.60	8.8467	0.7328	0.0223	0.9638	ì
	10	6.8470	2224.80	8.6001	0.7326	0.0224	0.9313	ì
								ì
	11	6.4035	2168.39	8.2490	0.7124	0.0209	0.8846	ì
	12	5.9600	2111.98	7.8979	0.7003	0.0199	0.8379	ì
	13	5.5165	2055.57	7.5468	0.6881	0.0190	0.7912	ì
	14	5.0730	1999.16	7.1957	0.6760	0.0180	0.7445	ì
	15	4.6295	1942.75	6.8446	0.6638	0.0170	0.6978	ì
	16	4.3689	1908.71	6.6219	0.6555	0.0170	0.6677	ì
	17	4.1082	1874.67	6.3992	0.6473	0.0170	0.6375	ì
	18	3.8476	1840.63	6.1764	0.6390	0.0170	0.6074	ì
	19	3.5869	1806.59	5.9537	0.6307	0.0170	0.5772	ì
	20	3.3263	1772.55	5.7310	0.6225	0.0170	0.5471	ì
	21	3.1687	1751.15	5.5929	0.6171	0.0170	0.5271	ì
	22	3.0111	1729.75	5.4548	0.6118	0.0170	0.5072	ì
	23	2.8536	1708.36	5.3167	0.6064	0.0170	0.4873	ì
	24	2.6960	1686.96	5.1786	0.6011	0.0170	0.4673	ì
	25	2.5385	1665.56	5.0405	0.5957	0.0170	0.4474	ì
	26	2.4412	1652.92	4.9617	0.5923	0.0170	0.4343	ì
	27	2.3439	1640.28	4.8829	0.5889	0.0170	0.4343	ì
	28	2.2467	1627.63	4.8041	0.5855	0.0170	0.4211	ì
	29	2.1494	1614.99	4.7253	0.5821	0.0170	0.4060	ì
	30	2.1494	1602.34	4.7255			0.3949	ì
					0.5787	0.0170		ì
	31	1.9919	1593.59	4.6149	0.5758	0.0170	0.3730	ì
	32	1.9316	1584.84	4.5833	0.5729	0.0170	0.3642	ì
	33	1.8713	1576.08	4.5517	0.5699	0.0170	0.3555	ì
	34	1.8110	1567.33	4.5201	0.5670	0.0170	0.3467	ì
	35	1.7507	1558.58	4.4885	0.5641	0.0170	0.3380	ì
	36	1.7166	1554.20	4.4977	0.5626	0.0165	0.3321	ì
	37	1.6826	1549.82	4.5070	0.5612	0.0160	0.3263	ì
	38	1.6485	1545.45	4.5162	0.5597	0.0156	0.3205	ì
	39	1.6145	1541.07	4.5255	0.5583	0.0151	0.3146	ì
	40	1.5805	1536.69	4.5347	0.5568	0.0146	0.3088	ì
	41	1.5639	1534.75	4.5863	0.5558	0.0141	0.3049	ì
	42	1.5474	1532.80	4.6378	0.5549	0.0136	0.3010	ì
	43	1.5309	1530.86	4.6894	0.5539	0.0131	0.2971	ì
	44	1.5143	1528.91	4.7409	0.5529	0.0126	0.2932	ì
	45	1.4978	1526.97	4.7924	0.5519	0.0122	0.2893	ì
	46	1.4973	1526.97	4.8926	0.5510	0.0122	0.2869	ì
	47	1.4968	1526.97	4.9928	0.5500	0.0122	0.2845	ì
								ì
	48 49	1.4963	1526.97	5.0930	0.5490 0.5481	0.0122	0.2821	ì
	-	1.4958	1526.97	5.1932		0.0122	0.2796	ì
	50	1.4954	1526.97	5.2933	0.5471	0.0122	0.2772	ì
	51	1.5099	1529.40	5.4592	0.5471	0.0126	0.2762	ì
	52	1.5245	1531.83	5.6250	0.5471	0.0131	0.2752	ì
	53	1.5391	1534.26	5.7908	0.5471	0.0136	0.2743	ì
	54	1.5537	1536.69	5.9566	0.5471	0.0141	0.2733	ì
	55	1.5683	1539.13	6.1225	0.5471	0.0146	0.2723	ì
	56	1.6019	1544.48	6.3836	0.5471	0.0151	0.2723	ì
	57	1.6354	1549.82	6.6447	0.5471	0.0156	0.2723	ì
	58	1.6690	1555.17	6.9059	0.5471	0.0160	0.2723	ì
	59	1.7025	1560.52	7.1670	0.5471	0.0165	0.2723	ì
	60	1.7361	1565.87	7.4282	0.5471	0.0170	0.2723	l
	61	1.7930	1574.63	7.8347	0.5476	0.0170	0.2738	ì
	62	1.8499	1583.38	8.2413	0.5481	0.0170	0.2752	l
	63	1.9068	1592.13	8.6478	0.5485	0.0170	0.2767	ì
	64	1.9637	1600.89	9.0543	0.5490	0.0170	0.2782	ì
	65	2.0206	1609.64	9.4609	0.5495	0.0170	0.2796	İ
	66	2.1144	1624.23	10.1038	0.5505	0.0170	0.2821	İ
	67	2.2083	1638.82	10.7467	0.5515	0.0170	0.2845	l
	68	2.3021	1653.41	11.3895	0.5524	0.0170	0.2869	l
	69	2.3960	1667.99	12.0324	0.5524	0.0170	0.2893	l
	70	2.4898	1682.58	12.6753	0.5544	0.0170	0.2033	İ
	70	2.4696	1705.44	13.7155	0.5558	0.0170	0.2916	İ
								ì
	72	2.7904	1728.30	14.7557	0.5573	0.0170	0.2996	ì
	73	2.9406	1751.15	15.7959	0.5588	0.0170	0.3034	l
	74	3.0909	1774.01	16.8360	0.5602	0.0170	0.3073	l
	75	3.2412	1796.86	17.8762	0.5617	0.0170	0.3112	l
	76	3.4892	1834.31	19.6152	0.5641	0.0170	0.3171	l
	77	3.7372	1871.75	21.3542	0.5665	0.0170	0.3229	İ
	78	3.9852	1909.20	23.0932	0.5690	0.0170	0.3287	İ
	79	4.2332	1946.64	24.8322	0.5714	0.0170	0.3346	İ
	80	4.4812	1984.09	26.5712	0.5738	0.0170	0.3404	į

Source: California Air Resources Board, EMFAC 2011

Notes: 1) Zero mph corresponds to starts, 2) Other emissions factors include idling emissions and exclude diurnal and evaporative emissions, 3) Five mph is best estimate for idling

| HEALTH COST OF TRANSPORTATION EMISSIONS (\$\frac{1}{3}\text{Color}\text{Transportation Emissions} \\ \text{(\$\frac{1}{3}\text{Color}\text{Transportation Emissions}} \\ \text{(\$\frac{1}{3}\text{Color}\text{Transportation Emissions}} \\ \text{Area} & \text{Proj Loc} & \text{CO}_2 \text{ CO}_2 \text{ NO}_x & \text{PM}_{10} & \text{SO}_x & \text{VOC} \\ \text{LA/South Coast} & 1 & \$50 & \$411 & \$8,010 & \$366,414 & \$47,341 & \$2,032 \\ \text{CA Rural Area} & 3 & \$50 & \$411 & \$8,010 & \$366,414 & \$47,341 & \$2,032 \\ \text{CO}_2 \text{e Uprater} & \text{2.0%} & \text{increase in value per year} \end{array}

Sources: McCubbin and Delucchi, 1996 for emissions other than CO2e Interagency Working Group on Social Cost of Carbon, United States Government, 2010 for CO2e

PASSENGER TRAIN EMISSIONS FACTORS (g/train-mile) **CO** 45.67 NO_X 583.58 250.11 PM₁₀ 62.02 31.01 19.73 19.73 Mode Year SO_X 2002 2022 45.67 LIGHT RAIL EMISSIONS FACTORS (g/veh-mile) Mode Year СО CO2 NO_X PM₁₀ SOX VOC 0.17 0.17 2002 0.14 0.06 2022 0.14 0.06

Source: California Air Resources Board

Pavement Adjustments (used only for pavement projects)

PAVEMENT DETERIORATION (IRI in inches/mile)

	Yea	r 20, By Loa	ding
Year 0	Light	Medium	Heavy
0	125	150	350
25	150	200	500
50	175	250	675
75	200	300	750
100	275	400	750
125	325	475	750
150	400	575	750
175	500	700	750
200	575	750	750
225	650	750	750
250	750	750	750
275	750	750	750
300	750	750	750
325	750	750	750
350	750	750	750
375	750	750	750
400	750	750	750
425	750	750	750
450	750	750	750

VEHICLE OPERATING SPEED

(percent adjustment)

IRI	Auto	Truck	
0	1.00	1.02	
25	1.00	1.02	
50	1.00	1.02	
75	1.00	1.02	
100	1.00	1.02	
125	1.00	1.02	
150	1.00	1.01	
175	1.00	1.00	
200	1.00	0.98	
225	1.00	0.95	
250	1.00	0.92	
275	0.99	0.89	
300	0.98	0.86	
325	0.97	0.83	
350	0.96	0.81	
375	0.95	0.78	
400	0.94	0.76	
425	0.93	0.73	
450	0.92	0.71	

Source: Paterson, 1987

Source: Botterill, 1996 and 1997

FUEL CONSUMPTION

(percent adjustment)								
IRI	Auto	Truck						
0	0.97	0.96						
25	0.98	0.97						
50	0.98	0.97						
75	0.98	0.98						
100	0.98	0.98						
125	0.99	0.99						
150	1.00	0.99						
175	1.00	1.00						
200	1.01	1.01						
225	1.01	1.02						
250	1.02	1.03						
275	1.03	1.04						
300	1.03	1.05						
325	1.04	1.06						
350	1.05	1.07						
375	1.06	1.08						
400	1.07	1.10						
425	1.08	1.11						
450	1.09	1.13						

Source: Texas Transportation Institute, 1994

NON-FUEL COSTS

(percent adjustment)

IRI	Auto	Truck
0	1.00	1.00
25	1.00	1.00
50	1.00	1.00
75	1.00	1.00
100	1.00	1.00
125	1.00	1.00
150	1.02	1.02
175	1.03	1.04
200	1.05	1.06
225	1.07	1.08
250	1.09	1.10
275	1.11	1.12
300	1.12	1.14
325	1.14	1.16
350	1.16	1.18
375	1.18	1.20
400	1.19	1.22
425	1.21	1.24
450	1.23	1.26

Source: ARRB Research Board TR VOC Model

Weaving Adjustments (used only for freeway connector, HOV connector, and HOV drop ramp projects)

VEHICLE OPERATING SPEED

(percent adjustment)

Percent	Freeway	HOV
Weaving	Conn	Project
0.000	1.00	1.00
0.002	0.98	0.99
0.004	0.96	0.98
0.006	0.95	0.96
0.008	0.93	0.95
0.010	0.91	0.94
0.012	0.89	0.93
0.014	0.87	0.92
0.016	0.85	0.90
0.018	0.84	0.89
0.020	0.79	0.88
0.022	0.75	0.87
0.024	0.71	0.85
0.026	0.66	0.84
0.028	0.62	0.82
0.030	0.58	0.79
0.032	0.54	0.76
0.034	0.50	0.73
0.036	0.48	0.71
0.038	0.47	0.68
0.040	0.47	0.65
0.042	0.47	0.62
0.044	0.47	0.60
0.046	0.46	0.57
0.048	0.46	0.54
0.050	0.46	0.51
0.052	0.46	0.48
0.054	0.45	0.48
0.056	0.45	0.47
0.058	0.45	0.47
0.060	0.45	0.47
0.062	0.45	0.47
0.064	0.45	0.47
0.066	0.45	0.47
0.068	0.45	0.46
0.070	0.45	0.46
0.072	0.45	0.46
0.074	0.45	0.46
0.076	0.45	0.46
0.078	0.45	0.46
0.080	0.45	0.45

Source: Fitzpatrick, Brewer, and Venglar, 2003

TMS Adjustments (used only for ramp metering, ramp metering signal coordination, incident management, traveler information projects, AVL, transit priority, and BRT projects)

PEAK PERIOD SPEED, VOLUME, AND NON-HIGHWAY BENEFITS

(percent adjustment)

TMS Without		With		Non-Highway Benefits			Total	
Strategy	Speed	Volume	Speed	Volume	TT	VOC	Em	Benefit
AMoth	1.02	0.95	1.02	0.95	-5.05	12.81	1.37	0.74
AMsev	1.53	0.94	1.53	0.94	1.21	1.38	-0.37	1.00
IMoth	0.88	1.18	0.98	0.96	0.51	0.15	0.06	0.74
IMsev	1.01	0.97	1.01	0.95	0.30	0.31	0.30	1.00
NoAdj	1.00	1.00	1.00	1.00	0.00	0.00	0.00	1.00
ORoth	0.98	1.03	1.00	1.00	-0.07	-0.03	-0.07	0.00
ORsev	0.95	1.03	1.00	1.00	0.00	0.00	5.67	0.00
RMoth	1.00	1.00	1.03	0.97	-0.07	-0.03	-0.07	1.00
RMsev	1.00	1.00	1.05	0.97	0.00	0.00	5.67	1.00
Tloth	1.00	1.00	1.02	0.97	-0.11	-0.12	-0.35	1.00
Tlsev	1.00	1.00	1.01	0.97	-0.39	-0.39	-0.35	1.00

Source: California Department of Transportation TMS Master Plan, 2003 18) Chaudhary and Messer, 2000

TRANSIT TRAVEL TIME AND AGENCY COST SAVINGS

(percent savings)

	Travel	Agency Costs		
TMS Strategy	Time	Capital	O&M	
Transit Vehicle Location (AVL)	15%	2%	8%	
Transit Vehicle Signal Priority	10%	-	-	
Bus Rapid Transit (BRT)	29%	-	-	

Sources: FHWA ITS Deployment Analysis System (IDAS), California PATH

18 18